import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder import streamlit as st df = pd.read_excel('cars.xls') x = df.drop('Price', axis=1) y = df[['Price']] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42) preprocessor = ColumnTransformer( transformers=[ ('num', StandardScaler(), ['Mileage', 'Cylinder', 'Liter', 'Doors']), ('cat', OneHotEncoder(), ['Make', 'Model', 'Trim', 'Type']) ] ) model = LinearRegression() pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', model)]) pipeline.fit(x_train, y_train) pred = pipeline.predict(x_test) rmse = mean_squared_error(pred, y_test) ** 0.5 r2 = r2_score(pred, y_test) def price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather): input_data = pd.DataFrame({'Make': [make], 'Model': [model], 'Trim': [trim], 'Mileage': [mileage], 'Type': [car_type], 'Cylinder': [cylinder], 'Liter': [liter], 'Doors': [doors], 'Cruise': [cruise], 'Sound': [sound], 'Leather': [leather]}) prediction = pipeline.predict(input_data)[0] return prediction def main(): st.title('Car Price Prediction :red_car:') st.write('Enter Car Details to predict the price') make = st.selectbox('Make', df['Make'].unique()) models = df[df['Make'] == make]['Model'].unique() model = st.selectbox('Model', models) trims = df[(df['Make'] == make) & (df['Model'] == model)]['Trim'].unique() trim = st.selectbox('Trim', trims) mileage = st.number_input('Mileage', 200, 60000) car_type = st.selectbox('Type', df['Type'].unique()) cylinder = st.selectbox('Cylinder', df['Cylinder'].unique()) liter = st.number_input('Liter', 1, 6) doors = st.selectbox('Doors', df['Doors'].unique()) cruise = st.radio('Cruise', [0, 1]) sound = st.radio('Sound', [0, 1]) leather = st.radio('Leather', [0, 1]) if st.button('Predict'): price = price_pred(make, model, trim, mileage, car_type, cylinder, liter, doors, cruise, sound, leather) price = float(price) # NumPy ndarray'ini float türüne dönüştürme st.write(f'The Predicted Price is: ${price:.2f}') if __name__ == '__main__': main()