import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np model = load_model("skin_cancer_model.h5") def process_image(img): img = img.resize((170,170)) img = np.array(img) img = img/255.0 img = np.expand_dims(img,axis=0) return img st.title("SKIN CANCER CLASSIFICATION:cancer:") st.write("Upload your image and see the results") file = st.file_uploader("Choose an image", type=["jpg","jpeg","png"]) if file is not None: img = Image.open(file) st.image(img, caption="Downloaded image") image=process_image(img) prediction = model.predict(image) predicted_class = np.argmax(prediction) class_names = ["Not Cancer","Cancer"] st.write(class_names[predicted_class])