import streamlit as st import os from langchain import PromptTemplate, HuggingFaceHub, LLMChain st.title("Generating Response with HuggingFace Models") st.markdown("## Model: `facebook/blenderbot-1B-distill`") def get_response(question: str) -> dict: """ Generate a response to a given question using the Blenderbot Large Language Model. Args: question (str): The question to be answered. Returns: dict: A dictionary containing the response text and metadata. """ template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id="facebook/blenderbot-1B-distill", model_kwargs={"temperature":0, "max_length":64})) response = llm_chain.invoke(question) return response question = st.text_area("Enter your question here...") if st.button("Get Response") and question: with st.spinner("Generating Response..."): answer = get_response(question) if answer is not None: st.success('Great! Response generated successfully') st.write(answer) st.write(answer["text"])