import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoTokenizer, AutoModelForSeq2SeqLM st.title("Generating Response with HuggingFace Models") st.markdown("## Model: `facebook/blenderbot-400M-distill`") with st.spinner("Getting this ready for you.."): model_name = "facebook/blenderbot-400M-distill" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def get_response(input_text): # Tokenize the input text and history inputs = tokenizer.encode_plus(input_text, return_tensors="pt") # Generate the response from the model outputs = model.generate(**inputs) # Decode the response response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip() return response user_input = st.text_area("Enter your query here...") if st.button("Get Response") and user_input: with st.spinner("Generating Response..."): answer = get_response(user_input) if answer is not None: st.success('Great! Response generated successfully') st.write(answer)