app / app.py
abdelrhman-mahmoud's picture
Update app.py
779cc0e
import streamlit as st
# from transformers import pipeline
from transformers import pipeline
# from PIL import Image
# import requests
# import torch
# from diffusers import DiffusionPipeline
from serpapi import GoogleSearch
def main():
#Load models
text_model_name = "EleutherAI/gpt-neo-1.3B"
text_generator = pipeline("text-generation", model=text_model_name, tokenizer=text_model_name)
st.title("AI Blog Post Generator")
kws = st.checkbox('generate keywords')
if kws:
title = st.text_input("Enter the title :")
generate = st.button('generate')
if generate:
params = {
"q": f'{title}',
"location": "Cairo, Egypt",
"hl": "en",
"gl": "us",
"google_domain": "google.com",
"api_key": "1d86ba79731e5b3c038fb9f75715883cab027b2f7b41b61ba76d59ec3b9e252d"
}
search = GoogleSearch(params)
results = search.get_dict()
results = results['organic_results']
for result in results:
title = result['title']
snippet = result['snippet']
st.subheader(title)
generated_text = text_generator(snippet,do_sample=True, min_length=150)[0]['generated_text']
st.write(generated_text)
# st.write(snippet)
else :
pass
keywords = st.text_input("Enter relevant keywords (comma-separated):")
# keywords = [kw.strip() for kw in keywords.split(",")]
# st.write(keywords)
# generated_text = text_generator(keyword, max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
# Button to generate blog post
# if st.button("Generate Blog"):
# if keywords:
# # Generate content based on keywords
# for keyword in keywords:
# generated_text = text_generator(keyword, max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
# st.subheader(keyword)
# st.write(generated_text)
# st.header('Conclusion')
# generated_text = text_generator(keywords[0], max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
# st.subheader(keyword)
# st.write(generated_text)
if __name__ == "__main__":
main()