Spaces:
Sleeping
Sleeping
abdiharyadi
commited on
Commit
·
e18c38e
1
Parent(s):
632ca18
fix: update IndoNLGTokenizer
Browse files- indobenchmark.py +3 -261
indobenchmark.py
CHANGED
@@ -14,21 +14,11 @@
|
|
14 |
# limitations under the License
|
15 |
""" Tokenization classes for IndoNLG model."""
|
16 |
|
17 |
-
from typing import
|
18 |
-
from transformers import PreTrainedTokenizer
|
19 |
|
20 |
-
from
|
21 |
-
from transformers.utils import (
|
22 |
-
PaddingStrategy,
|
23 |
-
TensorType,
|
24 |
-
is_tf_available,
|
25 |
-
is_torch_available,
|
26 |
-
logging,
|
27 |
-
to_py_obj,
|
28 |
-
)
|
29 |
-
import numpy as np
|
30 |
import sentencepiece as spm
|
31 |
-
from transformers.utils.generic import _is_tensorflow, _is_torch
|
32 |
|
33 |
logger = logging.get_logger(__name__)
|
34 |
|
@@ -350,251 +340,3 @@ class IndoNLGTokenizer(PreTrainedTokenizer):
|
|
350 |
def decode(self, inputs, skip_special_tokens=False, **kwargs):
|
351 |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
|
352 |
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
|
353 |
-
|
354 |
-
def _pad_decoder(
|
355 |
-
self,
|
356 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
357 |
-
max_length: Optional[int] = None,
|
358 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
359 |
-
pad_to_multiple_of: Optional[int] = None,
|
360 |
-
return_attention_mask: Optional[bool] = None,
|
361 |
-
) -> dict:
|
362 |
-
"""
|
363 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
364 |
-
Args:
|
365 |
-
encoded_inputs:
|
366 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
367 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
368 |
-
Will truncate by taking into account the special tokens.
|
369 |
-
padding_strategy: PaddingStrategy to use for padding.
|
370 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
371 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
372 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
373 |
-
The tokenizer padding sides are defined in self.padding_side:
|
374 |
-
- 'left': pads on the left of the sequences
|
375 |
-
- 'right': pads on the right of the sequences
|
376 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
377 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
378 |
-
>= 7.5 (Volta).
|
379 |
-
return_attention_mask:
|
380 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
381 |
-
"""
|
382 |
-
# Load from model defaults
|
383 |
-
if return_attention_mask is None:
|
384 |
-
return_attention_mask = "decoder_attention_mask" in self.model_input_names
|
385 |
-
|
386 |
-
required_input = encoded_inputs[self.model_input_names[2]]
|
387 |
-
|
388 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
389 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
390 |
-
|
391 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
392 |
-
|
393 |
-
# Initialize attention mask if not present.
|
394 |
-
if return_attention_mask and "decoder_attention_mask" not in encoded_inputs:
|
395 |
-
encoded_inputs["decoder_attention_mask"] = [1] * len(required_input)
|
396 |
-
|
397 |
-
if needs_to_be_padded:
|
398 |
-
difference = max_length - len(required_input)
|
399 |
-
|
400 |
-
if self.padding_side == "right":
|
401 |
-
if return_attention_mask:
|
402 |
-
encoded_inputs["decoder_attention_mask"] = encoded_inputs["decoder_attention_mask"] + [0] * difference
|
403 |
-
if "decoder_token_type_ids" in encoded_inputs:
|
404 |
-
encoded_inputs["decoder_token_type_ids"] = (
|
405 |
-
encoded_inputs["decoder_token_type_ids"] + [self.pad_token_type_id] * difference
|
406 |
-
)
|
407 |
-
if "decoder_special_tokens_mask" in encoded_inputs:
|
408 |
-
encoded_inputs["decoder_special_tokens_mask"] = encoded_inputs["decoder_special_tokens_mask"] + [1] * difference
|
409 |
-
encoded_inputs[self.model_input_names[2]] = required_input + [self.pad_token_id] * difference
|
410 |
-
|
411 |
-
label_input = encoded_inputs[self.model_input_names[4]]
|
412 |
-
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
|
413 |
-
elif self.padding_side == "left":
|
414 |
-
if return_attention_mask:
|
415 |
-
encoded_inputs["decoder_attention_mask"] = [0] * difference + encoded_inputs["decoder_attention_mask"]
|
416 |
-
if "decoder_token_type_ids" in encoded_inputs:
|
417 |
-
encoded_inputs["decoder_token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
418 |
-
"decoder_token_type_ids"
|
419 |
-
]
|
420 |
-
if "decoder_special_tokens_mask" in encoded_inputs:
|
421 |
-
encoded_inputs["decoder_special_tokens_mask"] = [1] * difference + encoded_inputs["decoder_special_tokens_mask"]
|
422 |
-
encoded_inputs[self.model_input_names[2]] = [self.pad_token_id] * difference + required_input
|
423 |
-
|
424 |
-
label_input = encoded_inputs[self.model_input_names[4]]
|
425 |
-
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
|
426 |
-
else:
|
427 |
-
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
428 |
-
|
429 |
-
return encoded_inputs
|
430 |
-
|
431 |
-
def pad(self,
|
432 |
-
encoded_inputs: Union[
|
433 |
-
BatchEncoding,
|
434 |
-
List[BatchEncoding],
|
435 |
-
Dict[str, EncodedInput],
|
436 |
-
Dict[str, List[EncodedInput]],
|
437 |
-
List[Dict[str, EncodedInput]],
|
438 |
-
],
|
439 |
-
padding: Union[bool, str, PaddingStrategy] = True,
|
440 |
-
max_length: Optional[int] = None,
|
441 |
-
pad_to_multiple_of: Optional[int] = None,
|
442 |
-
return_attention_mask: Optional[bool] = None,
|
443 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
444 |
-
verbose: bool = True,
|
445 |
-
) -> BatchEncoding:
|
446 |
-
"""
|
447 |
-
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
448 |
-
in the batch.
|
449 |
-
|
450 |
-
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
|
451 |
-
`self.pad_token_id` and `self.pad_token_type_id`)
|
452 |
-
|
453 |
-
<Tip>
|
454 |
-
|
455 |
-
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
456 |
-
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
457 |
-
PyTorch tensors, you will lose the specific device of your tensors however.
|
458 |
-
|
459 |
-
</Tip>
|
460 |
-
|
461 |
-
Args:
|
462 |
-
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
|
463 |
-
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
|
464 |
-
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
|
465 |
-
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
466 |
-
collate function.
|
467 |
-
|
468 |
-
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
|
469 |
-
the note above for the return type.
|
470 |
-
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
471 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
472 |
-
index) among:
|
473 |
-
|
474 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
475 |
-
sequence if provided).
|
476 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
477 |
-
acceptable input length for the model if that argument is not provided.
|
478 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
479 |
-
lengths).
|
480 |
-
max_length (`int`, *optional*):
|
481 |
-
Maximum length of the returned list and optionally padding length (see above).
|
482 |
-
pad_to_multiple_of (`int`, *optional*):
|
483 |
-
If set will pad the sequence to a multiple of the provided value.
|
484 |
-
|
485 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
486 |
-
>= 7.5 (Volta).
|
487 |
-
return_attention_mask (`bool`, *optional*):
|
488 |
-
Whether to return the attention mask. If left to the default, will return the attention mask according
|
489 |
-
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
490 |
-
|
491 |
-
[What are attention masks?](../glossary#attention-mask)
|
492 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
493 |
-
If set, will return tensors instead of list of python integers. Acceptable values are:
|
494 |
-
|
495 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
496 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
497 |
-
- `'np'`: Return Numpy `np.ndarray` objects.
|
498 |
-
verbose (`bool`, *optional*, defaults to `True`):
|
499 |
-
Whether or not to print more information and warnings.
|
500 |
-
"""
|
501 |
-
# If we have a list of dicts, let's convert it in a dict of lists
|
502 |
-
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
503 |
-
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
|
504 |
-
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
505 |
-
|
506 |
-
# The model's main input name, usually `input_ids`, has be passed for padding
|
507 |
-
if self.model_input_names[0] not in encoded_inputs:
|
508 |
-
raise ValueError(
|
509 |
-
"You should supply an encoding or a list of encodings to this method "
|
510 |
-
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
511 |
-
)
|
512 |
-
|
513 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
514 |
-
|
515 |
-
if not required_input:
|
516 |
-
if return_attention_mask:
|
517 |
-
encoded_inputs["attention_mask"] = []
|
518 |
-
return encoded_inputs
|
519 |
-
|
520 |
-
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
521 |
-
# and rebuild them afterwards if no return_tensors is specified
|
522 |
-
# Note that we lose the specific device the tensor may be on for PyTorch
|
523 |
-
|
524 |
-
first_element = required_input[0]
|
525 |
-
if isinstance(first_element, (list, tuple)):
|
526 |
-
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
527 |
-
for item in required_input:
|
528 |
-
if len(item) != 0:
|
529 |
-
first_element = item[0]
|
530 |
-
break
|
531 |
-
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
532 |
-
if not isinstance(first_element, (int, list, tuple)):
|
533 |
-
if is_tf_available() and _is_tensorflow(first_element):
|
534 |
-
return_tensors = "tf" if return_tensors is None else return_tensors
|
535 |
-
elif is_torch_available() and _is_torch(first_element):
|
536 |
-
return_tensors = "pt" if return_tensors is None else return_tensors
|
537 |
-
elif isinstance(first_element, np.ndarray):
|
538 |
-
return_tensors = "np" if return_tensors is None else return_tensors
|
539 |
-
else:
|
540 |
-
raise ValueError(
|
541 |
-
f"type of {first_element} unknown: {type(first_element)}. "
|
542 |
-
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
543 |
-
)
|
544 |
-
|
545 |
-
for key, value in encoded_inputs.items():
|
546 |
-
encoded_inputs[key] = to_py_obj(value)
|
547 |
-
|
548 |
-
# Convert padding_strategy in PaddingStrategy
|
549 |
-
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
550 |
-
padding=padding, max_length=max_length, verbose=verbose
|
551 |
-
)
|
552 |
-
|
553 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
554 |
-
if required_input and not isinstance(required_input[0], (list, tuple)):
|
555 |
-
encoded_inputs = self._pad(
|
556 |
-
encoded_inputs,
|
557 |
-
max_length=max_length,
|
558 |
-
padding_strategy=padding_strategy,
|
559 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
560 |
-
return_attention_mask=return_attention_mask,
|
561 |
-
)
|
562 |
-
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
563 |
-
|
564 |
-
batch_size = len(required_input)
|
565 |
-
assert all(
|
566 |
-
len(v) == batch_size for v in encoded_inputs.values()
|
567 |
-
), "Some items in the output dictionary have a different batch size than others."
|
568 |
-
|
569 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
570 |
-
max_length = max(len(inputs) for inputs in required_input)
|
571 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
572 |
-
|
573 |
-
batch_outputs = {}
|
574 |
-
for i in range(batch_size):
|
575 |
-
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
576 |
-
outputs = self._pad(
|
577 |
-
inputs,
|
578 |
-
max_length=max_length,
|
579 |
-
padding_strategy=padding_strategy,
|
580 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
581 |
-
return_attention_mask=return_attention_mask,
|
582 |
-
)
|
583 |
-
|
584 |
-
# Handle decoder_input_ids
|
585 |
-
if self.model_input_names[2] in outputs:
|
586 |
-
max_decoder_length = max(len(inputs) for inputs in encoded_inputs[self.model_input_names[2]])
|
587 |
-
outputs = self._pad_decoder(
|
588 |
-
outputs,
|
589 |
-
max_length=max_decoder_length,
|
590 |
-
padding_strategy=padding_strategy,
|
591 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
592 |
-
return_attention_mask=return_attention_mask,
|
593 |
-
)
|
594 |
-
|
595 |
-
for key, value in outputs.items():
|
596 |
-
if key not in batch_outputs:
|
597 |
-
batch_outputs[key] = []
|
598 |
-
batch_outputs[key].append(value)
|
599 |
-
|
600 |
-
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
|
|
14 |
# limitations under the License
|
15 |
""" Tokenization classes for IndoNLG model."""
|
16 |
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
from transformers import PreTrainedTokenizer
|
19 |
|
20 |
+
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
import sentencepiece as spm
|
|
|
22 |
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
|
|
340 |
def decode(self, inputs, skip_special_tokens=False, **kwargs):
|
341 |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
|
342 |
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|