import streamlit as st import pandas as pd from scikit-learn import datasets from scikit-learn.ensemble import RandomForestClassifier st.title("""Iris App Classifier""") st.sidebar.header('User input parameters') def user_input_features(): sepal_length = st.sidebar.slider('Sepal length',4.3,7.8,5.0) sepal_width = st.sidebar.slider('Sepal width',2.0,4.8,3.0) petal_length = st.sidebar.slider('petal length',1.0,6.9,1.3) petal_width = st.sidebar.slider('petal width',0.1,2.5,0.2) data = {'sepal_length':sepal_length,'sepal_width':sepal_width, 'petal_length':petal_length,'petal_width':petal_width} features = pd.DataFrame(data,index=[0]) return features df = user_input_features() st.write(df) iris = datasets.load_iris() X=iris.data y=iris.target clf = RandomForestClassifier() clf.fit(X,y) prediction = clf.predict(df) prediction_proba = clf.predict_proba(df) st.subheader('Class labels') st.write(iris.target_names) st.subheader('Prediction') st.write(iris.target_names[prediction]) st.subheader('Prediction_Proba') st.write(prediction_proba)