chat / app.py
abdulmalek9's picture
Update app.py
e36ffd7 verified
import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import transformers
import torch
from huggingface_hub import login
from langchain_community.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
# login(token=token)
def greet(name):
return str(int(name)+10)
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_length=512,
temperature=0.5,
top_p=0.95,
repetition_penalty=1.15
)
local_llm = HuggingFacePipeline(pipeline=pipe)
def get_llama_response(prompt: str) -> None:
"""
Generate a response from the Llama model.
Parameters:
prompt (str): The user's input/question for the model.
Returns:
None: Prints the model's response.
"""
sequences = llama_pipeline(
prompt,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=256,
truncation=True
)
print("Chatbot:", sequences[0]['generated_text'])
prompt = 'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?\n'
get_llama_response(prompt)
print('hhh')
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()