Spaces:
Paused
Paused
Commit
·
8d1019d
1
Parent(s):
26cb83d
- Dockerfile +12 -0
- emotion_recognition/__pycache__/ai_model_photo.cpython-311.pyc +0 -0
- emotion_recognition/abd13.jpg +0 -0
- emotion_recognition/ai_model_photo.py +101 -0
- emotion_recognition/ai_model_real_time.py +94 -0
- emotion_recognition/info.txt +4 -0
- emotion_recognition/models/emotion_model(MyNet0.82).h5 +3 -0
- emotion_recognition/models/emotion_model(MyNet0.82).json +1 -0
- emotion_recognition/models/opencv_face_detector.pbtxt +2362 -0
- emotion_recognition/models/opencv_face_detector_uint8.pb +3 -0
- main.py +276 -0
- requirements.txt +0 -0
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
COPY ./requirements.txt /code/requirements.txt
|
7 |
+
|
8 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
9 |
+
|
10 |
+
COPY . .
|
11 |
+
|
12 |
+
CMD ["gunicorn","-b","0.0.0.0:7860" "main:app"]
|
emotion_recognition/__pycache__/ai_model_photo.cpython-311.pyc
ADDED
Binary file (5.68 kB). View file
|
|
emotion_recognition/abd13.jpg
ADDED
![]() |
emotion_recognition/ai_model_photo.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Detecte Emotion By photo
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
from keras.models import model_from_json
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import threading
|
8 |
+
|
9 |
+
|
10 |
+
def display_image(image_array):
|
11 |
+
cv2.imshow('My Image', image_array)
|
12 |
+
cv2.waitKey(0)
|
13 |
+
cv2.destroyAllWindows()
|
14 |
+
|
15 |
+
|
16 |
+
# os.chdir('models')
|
17 |
+
emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful",
|
18 |
+
3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
|
19 |
+
|
20 |
+
# load json and create model
|
21 |
+
# put your model path there
|
22 |
+
json_file = open(
|
23 |
+
"emotion_recognition/models/emotion_model(MyNet0.82).json", 'r')
|
24 |
+
loaded_model_json = json_file.read()
|
25 |
+
json_file.close()
|
26 |
+
emotion_model = model_from_json(loaded_model_json)
|
27 |
+
|
28 |
+
# load weights into new model
|
29 |
+
# put your weight path there
|
30 |
+
emotion_model.load_weights(
|
31 |
+
"emotion_recognition/models/emotion_model(MyNet0.82).h5")
|
32 |
+
print("Loaded model from disk")
|
33 |
+
|
34 |
+
|
35 |
+
def detectFace(net, frame, confidence_threshold=0.7):
|
36 |
+
frameOpencvDNN = frame.copy()
|
37 |
+
print(frameOpencvDNN.shape)
|
38 |
+
frameHeight = frameOpencvDNN.shape[0]
|
39 |
+
frameWidth = frameOpencvDNN.shape[1]
|
40 |
+
blob = cv2.dnn.blobFromImage(frameOpencvDNN, 1.0, (227, 227), [
|
41 |
+
124.96, 115.97, 106.13], swapRB=True, crop=False)
|
42 |
+
net.setInput(blob)
|
43 |
+
detections = net.forward()
|
44 |
+
faceBoxes = []
|
45 |
+
for i in range(detections.shape[2]):
|
46 |
+
confidence = detections[0, 0, i, 2]
|
47 |
+
if confidence > confidence_threshold:
|
48 |
+
x1 = int(detections[0, 0, i, 3]*frameWidth)
|
49 |
+
y1 = int(detections[0, 0, i, 4]*frameHeight)
|
50 |
+
x2 = int(detections[0, 0, i, 5]*frameWidth)
|
51 |
+
y2 = int(detections[0, 0, i, 6]*frameHeight)
|
52 |
+
print("x1=", x1, " x2=", x2, " y1=", y1, " y2=", y2)
|
53 |
+
faceBoxes.append([x1, y1, x2, y2])
|
54 |
+
cv2.rectangle(frameOpencvDNN, (x1, y1), (x2, y2),
|
55 |
+
(0, 255, 0), int(round(frameHeight/150)), 8)
|
56 |
+
return frameOpencvDNN, faceBoxes
|
57 |
+
|
58 |
+
|
59 |
+
faceProto = 'emotion_recognition/models/opencv_face_detector.pbtxt'
|
60 |
+
faceModel = 'emotion_recognition/models/opencv_face_detector_uint8.pb'
|
61 |
+
# Loding detecting face model
|
62 |
+
faceNet = cv2.dnn.readNet(faceModel, faceProto)
|
63 |
+
|
64 |
+
# Get a Test image and process it to send it to model
|
65 |
+
|
66 |
+
|
67 |
+
def ai(path):
|
68 |
+
f = cv2.imread(path, cv2.IMREAD_COLOR)
|
69 |
+
# cv2.imshow("fla",f)
|
70 |
+
gray_frame = cv2.cvtColor(f, cv2.COLOR_BGR2GRAY)
|
71 |
+
resultImg, faceBoxes = detectFace(faceNet, f)
|
72 |
+
print('faceBoxes', faceBoxes)
|
73 |
+
|
74 |
+
# Get the cordnate of face
|
75 |
+
x1, y1, x2, y2 = faceBoxes[0][0], faceBoxes[0][1], faceBoxes[0][2], faceBoxes[0][3]
|
76 |
+
print("x , y , w , h", x1, y1, x2, y2)
|
77 |
+
|
78 |
+
roi_gray_frame = gray_frame[y1-20:y2+10, x1-20:x2+10]
|
79 |
+
cropped_img = np.expand_dims(np.expand_dims(
|
80 |
+
cv2.resize(roi_gray_frame, (48, 48)), -1), 0)
|
81 |
+
img_resized = cv2.resize(resultImg, (0, 0), fx=0.5,
|
82 |
+
fy=0.5, interpolation=cv2.INTER_AREA)
|
83 |
+
# send photo to model
|
84 |
+
emotion_prediction = emotion_model.predict(cropped_img)
|
85 |
+
|
86 |
+
# Get the result
|
87 |
+
maxindex = int(np.argmax(emotion_prediction))
|
88 |
+
cv2.putText(img_resized, emotion_dict[maxindex], (x1+5, y1-20),
|
89 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
|
90 |
+
|
91 |
+
# cv2.imshow("crop",resultImg)
|
92 |
+
# cv2.resizeWindow("crop",720,460)
|
93 |
+
# cv2.imshow("crop2",roi_gray_frame)
|
94 |
+
# cv2.resizeWindow("crop2",720,460)
|
95 |
+
print("emotion_prediction=", emotion_dict[maxindex])
|
96 |
+
|
97 |
+
display_thread = threading.Thread(
|
98 |
+
target=display_image, args=(img_resized,))
|
99 |
+
display_thread.start()
|
100 |
+
|
101 |
+
return emotion_dict[maxindex]
|
emotion_recognition/ai_model_real_time.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Detecte Emotion in Real Time
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
from keras.models import model_from_json
|
5 |
+
import numpy as np
|
6 |
+
os.chdir('D:/Desktop/CAE/fifth/graduation_project/python/emotion_recognition/models')
|
7 |
+
emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful",
|
8 |
+
3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
|
9 |
+
|
10 |
+
# load json and create model
|
11 |
+
# put your model path there
|
12 |
+
json_file = open(
|
13 |
+
'D:/Desktop/CAE/fifth/graduation_project/python/emotion_recognition/models/emotion_model(MyNet0.82).json', 'r')
|
14 |
+
loaded_model_json = json_file.read()
|
15 |
+
json_file.close()
|
16 |
+
emotion_model = model_from_json(loaded_model_json)
|
17 |
+
|
18 |
+
# load weights into new model
|
19 |
+
# put your weight path there
|
20 |
+
emotion_model.load_weights(
|
21 |
+
"D:/Desktop/CAE/fifth/graduation_project/python/emotion_recognition/models/emotion_model(MyNet0.82).h5")
|
22 |
+
print("Loaded model from disk")
|
23 |
+
|
24 |
+
|
25 |
+
def detectFace(net, frame, confidence_threshold=0.7):
|
26 |
+
frameOpencvDNN = frame.copy()
|
27 |
+
print(frameOpencvDNN.shape)
|
28 |
+
frameHeight = frameOpencvDNN.shape[0]
|
29 |
+
frameWidth = frameOpencvDNN.shape[1]
|
30 |
+
blob = cv2.dnn.blobFromImage(frameOpencvDNN, 1.0, (227, 227), [
|
31 |
+
124.96, 115.97, 106.13], swapRB=True, crop=False)
|
32 |
+
net.setInput(blob)
|
33 |
+
detections = net.forward()
|
34 |
+
faceBoxes = []
|
35 |
+
for i in range(detections.shape[2]):
|
36 |
+
confidence = detections[0, 0, i, 2]
|
37 |
+
if confidence > confidence_threshold:
|
38 |
+
x1 = int(detections[0, 0, i, 3]*frameWidth)
|
39 |
+
y1 = int(detections[0, 0, i, 4]*frameHeight)
|
40 |
+
x2 = int(detections[0, 0, i, 5]*frameWidth)
|
41 |
+
y2 = int(detections[0, 0, i, 6]*frameHeight)
|
42 |
+
if ((x1 > 60) and (x2 > 50) and (y1 > 40) and (y2 > 40)):
|
43 |
+
print("x1=", x1, " x2=", x2, " y1=", y1, " y2=", y2)
|
44 |
+
faceBoxes.append([x1, y1, x2, y2])
|
45 |
+
else:
|
46 |
+
continue
|
47 |
+
cv2.rectangle(frameOpencvDNN, (x1, y1), (x2, y2),
|
48 |
+
(0, 255, 0), int(round(frameHeight/150)), 8)
|
49 |
+
return frameOpencvDNN, faceBoxes
|
50 |
+
|
51 |
+
|
52 |
+
faceProto = './opencv_face_detector.pbtxt'
|
53 |
+
faceModel = './opencv_face_detector_uint8.pb'
|
54 |
+
# Loding detecting face model
|
55 |
+
faceNet = cv2.dnn.readNet(faceModel, faceProto)
|
56 |
+
|
57 |
+
# Get a Test image and process it to send it to model
|
58 |
+
|
59 |
+
|
60 |
+
def ai():
|
61 |
+
cap = cv2.VideoCapture(0)
|
62 |
+
|
63 |
+
while cv2.waitKey(1) < 0:
|
64 |
+
hasFrame, frame = cap.read()
|
65 |
+
if not hasFrame:
|
66 |
+
cv2.waitKey()
|
67 |
+
break
|
68 |
+
|
69 |
+
resultImg, faceBoxes = detectFace(faceNet, frame)
|
70 |
+
|
71 |
+
if not faceBoxes:
|
72 |
+
print("No face detected")
|
73 |
+
|
74 |
+
for (x1, y1, x2, y2) in faceBoxes:
|
75 |
+
gray_frame = cv2.cvtColor(resultImg, cv2.COLOR_BGR2GRAY)
|
76 |
+
print("x , y , w , h", x1, y1, x2, y2)
|
77 |
+
roi_gray_frame = gray_frame[y1-20:y2+10, x1-20:x2+10]
|
78 |
+
cropped_img = np.expand_dims(np.expand_dims(
|
79 |
+
cv2.resize(roi_gray_frame, (48, 48)), -1), 0)
|
80 |
+
emotion_prediction = emotion_model.predict(cropped_img)
|
81 |
+
maxindex = int(np.argmax(emotion_prediction))
|
82 |
+
cv2.putText(resultImg, emotion_dict[maxindex], (
|
83 |
+
x1+5, y1-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
|
84 |
+
|
85 |
+
cv2.imshow("Detecting age and Gender", resultImg)
|
86 |
+
|
87 |
+
if cv2.waitKey(33) & 0xFF == ord('q'):
|
88 |
+
break
|
89 |
+
|
90 |
+
cap.release()
|
91 |
+
cv2.destroyAllWindows()
|
92 |
+
|
93 |
+
|
94 |
+
ai()
|
emotion_recognition/info.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
this is a trial file to add some lines
|
2 |
+
the main purpose of this file is testing our own chatbot
|
3 |
+
this bot isn't for answering general questions
|
4 |
+
here in computer and automation engineering we are learning about large language model
|
emotion_recognition/models/emotion_model(MyNet0.82).h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82efa51bfa39bf9540312a61e7220664b87ee7f4687d78d6b59376f7153458f8
|
3 |
+
size 9423448
|
emotion_recognition/models/emotion_model(MyNet0.82).json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"module": "keras.layers", "class_name": "InputLayer", "config": {"batch_input_shape": [null, 48, 48, 1], "dtype": "float32", "sparse": false, "ragged": false, "name": "conv2d_input"}, "registered_name": null}, {"module": "keras.layers", "class_name": "Conv2D", "config": {"name": "conv2d", "trainable": true, "dtype": "float32", "batch_input_shape": [null, 48, 48, 1], "filters": 32, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 48, 48, 1]}}, {"module": "keras.layers", "class_name": "Conv2D", "config": {"name": "conv2d_1", "trainable": true, "dtype": "float32", "filters": 64, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 46, 46, 32]}}, {"module": "keras.layers", "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d", "trainable": true, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "registered_name": null, "build_config": {"input_shape": [null, 44, 44, 64]}}, {"module": "keras.layers", "class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "gamma_initializer": {"module": "keras.initializers", "class_name": "Ones", "config": {}, "registered_name": null}, "moving_mean_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "moving_variance_initializer": {"module": "keras.initializers", "class_name": "Ones", "config": {}, "registered_name": null}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 22, 22, 64]}}, {"module": "keras.layers", "class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.25, "noise_shape": null, "seed": null}, "registered_name": null, "build_config": {"input_shape": [null, 22, 22, 64]}}, {"module": "keras.layers", "class_name": "Conv2D", "config": {"name": "conv2d_2", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 22, 22, 64]}}, {"module": "keras.layers", "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_1", "trainable": true, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "registered_name": null, "build_config": {"input_shape": [null, 20, 20, 128]}}, {"module": "keras.layers", "class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.25, "noise_shape": null, "seed": null}, "registered_name": null, "build_config": {"input_shape": [null, 10, 10, 128]}}, {"module": "keras.layers", "class_name": "Conv2D", "config": {"name": "conv2d_3", "trainable": true, "dtype": "float32", "filters": 128, "kernel_size": [3, 3], "strides": [1, 1], "padding": "valid", "data_format": "channels_last", "dilation_rate": [1, 1], "groups": 1, "activation": "relu", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 10, 10, 128]}}, {"module": "keras.layers", "class_name": "MaxPooling2D", "config": {"name": "max_pooling2d_2", "trainable": true, "dtype": "float32", "pool_size": [2, 2], "padding": "valid", "strides": [2, 2], "data_format": "channels_last"}, "registered_name": null, "build_config": {"input_shape": [null, 8, 8, 128]}}, {"module": "keras.layers", "class_name": "BatchNormalization", "config": {"name": "batch_normalization_1", "trainable": true, "dtype": "float32", "axis": [3], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "gamma_initializer": {"module": "keras.initializers", "class_name": "Ones", "config": {}, "registered_name": null}, "moving_mean_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "moving_variance_initializer": {"module": "keras.initializers", "class_name": "Ones", "config": {}, "registered_name": null}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 4, 4, 128]}}, {"module": "keras.layers", "class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "dtype": "float32", "rate": 0.25, "noise_shape": null, "seed": null}, "registered_name": null, "build_config": {"input_shape": [null, 4, 4, 128]}}, {"module": "keras.layers", "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "registered_name": null, "build_config": {"input_shape": [null, 4, 4, 128]}}, {"module": "keras.layers", "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 1024, "activation": "relu", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 2048]}}, {"module": "keras.layers", "class_name": "Dropout", "config": {"name": "dropout_3", "trainable": true, "dtype": "float32", "rate": 0.5, "noise_shape": null, "seed": null}, "registered_name": null, "build_config": {"input_shape": [null, 1024]}}, {"module": "keras.layers", "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"module": "keras.initializers", "class_name": "GlorotUniform", "config": {"seed": null}, "registered_name": null}, "bias_initializer": {"module": "keras.initializers", "class_name": "Zeros", "config": {}, "registered_name": null}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "registered_name": null, "build_config": {"input_shape": [null, 1024]}}]}, "keras_version": "2.14.0", "backend": "tensorflow"}
|
emotion_recognition/models/opencv_face_detector.pbtxt
ADDED
@@ -0,0 +1,2362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
node {
|
2 |
+
name: "data"
|
3 |
+
op: "Placeholder"
|
4 |
+
attr {
|
5 |
+
key: "dtype"
|
6 |
+
value {
|
7 |
+
type: DT_FLOAT
|
8 |
+
}
|
9 |
+
}
|
10 |
+
}
|
11 |
+
node {
|
12 |
+
name: "data_bn/FusedBatchNorm"
|
13 |
+
op: "FusedBatchNorm"
|
14 |
+
input: "data:0"
|
15 |
+
input: "data_bn/gamma"
|
16 |
+
input: "data_bn/beta"
|
17 |
+
input: "data_bn/mean"
|
18 |
+
input: "data_bn/std"
|
19 |
+
attr {
|
20 |
+
key: "epsilon"
|
21 |
+
value {
|
22 |
+
f: 1.00099996416e-05
|
23 |
+
}
|
24 |
+
}
|
25 |
+
}
|
26 |
+
node {
|
27 |
+
name: "data_scale/Mul"
|
28 |
+
op: "Mul"
|
29 |
+
input: "data_bn/FusedBatchNorm"
|
30 |
+
input: "data_scale/mul"
|
31 |
+
}
|
32 |
+
node {
|
33 |
+
name: "data_scale/BiasAdd"
|
34 |
+
op: "BiasAdd"
|
35 |
+
input: "data_scale/Mul"
|
36 |
+
input: "data_scale/add"
|
37 |
+
}
|
38 |
+
node {
|
39 |
+
name: "SpaceToBatchND/block_shape"
|
40 |
+
op: "Const"
|
41 |
+
attr {
|
42 |
+
key: "value"
|
43 |
+
value {
|
44 |
+
tensor {
|
45 |
+
dtype: DT_INT32
|
46 |
+
tensor_shape {
|
47 |
+
dim {
|
48 |
+
size: 2
|
49 |
+
}
|
50 |
+
}
|
51 |
+
int_val: 1
|
52 |
+
int_val: 1
|
53 |
+
}
|
54 |
+
}
|
55 |
+
}
|
56 |
+
}
|
57 |
+
node {
|
58 |
+
name: "SpaceToBatchND/paddings"
|
59 |
+
op: "Const"
|
60 |
+
attr {
|
61 |
+
key: "value"
|
62 |
+
value {
|
63 |
+
tensor {
|
64 |
+
dtype: DT_INT32
|
65 |
+
tensor_shape {
|
66 |
+
dim {
|
67 |
+
size: 2
|
68 |
+
}
|
69 |
+
dim {
|
70 |
+
size: 2
|
71 |
+
}
|
72 |
+
}
|
73 |
+
int_val: 3
|
74 |
+
int_val: 3
|
75 |
+
int_val: 3
|
76 |
+
int_val: 3
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
80 |
+
}
|
81 |
+
node {
|
82 |
+
name: "Pad"
|
83 |
+
op: "SpaceToBatchND"
|
84 |
+
input: "data_scale/BiasAdd"
|
85 |
+
input: "SpaceToBatchND/block_shape"
|
86 |
+
input: "SpaceToBatchND/paddings"
|
87 |
+
}
|
88 |
+
node {
|
89 |
+
name: "conv1_h/Conv2D"
|
90 |
+
op: "Conv2D"
|
91 |
+
input: "Pad"
|
92 |
+
input: "conv1_h/weights"
|
93 |
+
attr {
|
94 |
+
key: "dilations"
|
95 |
+
value {
|
96 |
+
list {
|
97 |
+
i: 1
|
98 |
+
i: 1
|
99 |
+
i: 1
|
100 |
+
i: 1
|
101 |
+
}
|
102 |
+
}
|
103 |
+
}
|
104 |
+
attr {
|
105 |
+
key: "padding"
|
106 |
+
value {
|
107 |
+
s: "VALID"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
attr {
|
111 |
+
key: "strides"
|
112 |
+
value {
|
113 |
+
list {
|
114 |
+
i: 1
|
115 |
+
i: 2
|
116 |
+
i: 2
|
117 |
+
i: 1
|
118 |
+
}
|
119 |
+
}
|
120 |
+
}
|
121 |
+
}
|
122 |
+
node {
|
123 |
+
name: "conv1_h/BiasAdd"
|
124 |
+
op: "BiasAdd"
|
125 |
+
input: "conv1_h/Conv2D"
|
126 |
+
input: "conv1_h/bias"
|
127 |
+
}
|
128 |
+
node {
|
129 |
+
name: "BatchToSpaceND"
|
130 |
+
op: "BatchToSpaceND"
|
131 |
+
input: "conv1_h/BiasAdd"
|
132 |
+
}
|
133 |
+
node {
|
134 |
+
name: "conv1_bn_h/FusedBatchNorm"
|
135 |
+
op: "FusedBatchNorm"
|
136 |
+
input: "BatchToSpaceND"
|
137 |
+
input: "conv1_bn_h/gamma"
|
138 |
+
input: "conv1_bn_h/beta"
|
139 |
+
input: "conv1_bn_h/mean"
|
140 |
+
input: "conv1_bn_h/std"
|
141 |
+
attr {
|
142 |
+
key: "epsilon"
|
143 |
+
value {
|
144 |
+
f: 1.00099996416e-05
|
145 |
+
}
|
146 |
+
}
|
147 |
+
}
|
148 |
+
node {
|
149 |
+
name: "conv1_scale_h/Mul"
|
150 |
+
op: "Mul"
|
151 |
+
input: "conv1_bn_h/FusedBatchNorm"
|
152 |
+
input: "conv1_scale_h/mul"
|
153 |
+
}
|
154 |
+
node {
|
155 |
+
name: "conv1_scale_h/BiasAdd"
|
156 |
+
op: "BiasAdd"
|
157 |
+
input: "conv1_scale_h/Mul"
|
158 |
+
input: "conv1_scale_h/add"
|
159 |
+
}
|
160 |
+
node {
|
161 |
+
name: "Relu"
|
162 |
+
op: "Relu"
|
163 |
+
input: "conv1_scale_h/BiasAdd"
|
164 |
+
}
|
165 |
+
node {
|
166 |
+
name: "conv1_pool/MaxPool"
|
167 |
+
op: "MaxPool"
|
168 |
+
input: "Relu"
|
169 |
+
attr {
|
170 |
+
key: "ksize"
|
171 |
+
value {
|
172 |
+
list {
|
173 |
+
i: 1
|
174 |
+
i: 3
|
175 |
+
i: 3
|
176 |
+
i: 1
|
177 |
+
}
|
178 |
+
}
|
179 |
+
}
|
180 |
+
attr {
|
181 |
+
key: "padding"
|
182 |
+
value {
|
183 |
+
s: "SAME"
|
184 |
+
}
|
185 |
+
}
|
186 |
+
attr {
|
187 |
+
key: "strides"
|
188 |
+
value {
|
189 |
+
list {
|
190 |
+
i: 1
|
191 |
+
i: 2
|
192 |
+
i: 2
|
193 |
+
i: 1
|
194 |
+
}
|
195 |
+
}
|
196 |
+
}
|
197 |
+
}
|
198 |
+
node {
|
199 |
+
name: "layer_64_1_conv1_h/Conv2D"
|
200 |
+
op: "Conv2D"
|
201 |
+
input: "conv1_pool/MaxPool"
|
202 |
+
input: "layer_64_1_conv1_h/weights"
|
203 |
+
attr {
|
204 |
+
key: "dilations"
|
205 |
+
value {
|
206 |
+
list {
|
207 |
+
i: 1
|
208 |
+
i: 1
|
209 |
+
i: 1
|
210 |
+
i: 1
|
211 |
+
}
|
212 |
+
}
|
213 |
+
}
|
214 |
+
attr {
|
215 |
+
key: "padding"
|
216 |
+
value {
|
217 |
+
s: "SAME"
|
218 |
+
}
|
219 |
+
}
|
220 |
+
attr {
|
221 |
+
key: "strides"
|
222 |
+
value {
|
223 |
+
list {
|
224 |
+
i: 1
|
225 |
+
i: 1
|
226 |
+
i: 1
|
227 |
+
i: 1
|
228 |
+
}
|
229 |
+
}
|
230 |
+
}
|
231 |
+
}
|
232 |
+
node {
|
233 |
+
name: "layer_64_1_bn2_h/FusedBatchNorm"
|
234 |
+
op: "BiasAdd"
|
235 |
+
input: "layer_64_1_conv1_h/Conv2D"
|
236 |
+
input: "layer_64_1_conv1_h/Conv2D_bn_offset"
|
237 |
+
}
|
238 |
+
node {
|
239 |
+
name: "layer_64_1_scale2_h/Mul"
|
240 |
+
op: "Mul"
|
241 |
+
input: "layer_64_1_bn2_h/FusedBatchNorm"
|
242 |
+
input: "layer_64_1_scale2_h/mul"
|
243 |
+
}
|
244 |
+
node {
|
245 |
+
name: "layer_64_1_scale2_h/BiasAdd"
|
246 |
+
op: "BiasAdd"
|
247 |
+
input: "layer_64_1_scale2_h/Mul"
|
248 |
+
input: "layer_64_1_scale2_h/add"
|
249 |
+
}
|
250 |
+
node {
|
251 |
+
name: "Relu_1"
|
252 |
+
op: "Relu"
|
253 |
+
input: "layer_64_1_scale2_h/BiasAdd"
|
254 |
+
}
|
255 |
+
node {
|
256 |
+
name: "layer_64_1_conv2_h/Conv2D"
|
257 |
+
op: "Conv2D"
|
258 |
+
input: "Relu_1"
|
259 |
+
input: "layer_64_1_conv2_h/weights"
|
260 |
+
attr {
|
261 |
+
key: "dilations"
|
262 |
+
value {
|
263 |
+
list {
|
264 |
+
i: 1
|
265 |
+
i: 1
|
266 |
+
i: 1
|
267 |
+
i: 1
|
268 |
+
}
|
269 |
+
}
|
270 |
+
}
|
271 |
+
attr {
|
272 |
+
key: "padding"
|
273 |
+
value {
|
274 |
+
s: "SAME"
|
275 |
+
}
|
276 |
+
}
|
277 |
+
attr {
|
278 |
+
key: "strides"
|
279 |
+
value {
|
280 |
+
list {
|
281 |
+
i: 1
|
282 |
+
i: 1
|
283 |
+
i: 1
|
284 |
+
i: 1
|
285 |
+
}
|
286 |
+
}
|
287 |
+
}
|
288 |
+
}
|
289 |
+
node {
|
290 |
+
name: "add"
|
291 |
+
op: "Add"
|
292 |
+
input: "layer_64_1_conv2_h/Conv2D"
|
293 |
+
input: "conv1_pool/MaxPool"
|
294 |
+
}
|
295 |
+
node {
|
296 |
+
name: "layer_128_1_bn1_h/FusedBatchNorm"
|
297 |
+
op: "FusedBatchNorm"
|
298 |
+
input: "add"
|
299 |
+
input: "layer_128_1_bn1_h/gamma"
|
300 |
+
input: "layer_128_1_bn1_h/beta"
|
301 |
+
input: "layer_128_1_bn1_h/mean"
|
302 |
+
input: "layer_128_1_bn1_h/std"
|
303 |
+
attr {
|
304 |
+
key: "epsilon"
|
305 |
+
value {
|
306 |
+
f: 1.00099996416e-05
|
307 |
+
}
|
308 |
+
}
|
309 |
+
}
|
310 |
+
node {
|
311 |
+
name: "layer_128_1_scale1_h/Mul"
|
312 |
+
op: "Mul"
|
313 |
+
input: "layer_128_1_bn1_h/FusedBatchNorm"
|
314 |
+
input: "layer_128_1_scale1_h/mul"
|
315 |
+
}
|
316 |
+
node {
|
317 |
+
name: "layer_128_1_scale1_h/BiasAdd"
|
318 |
+
op: "BiasAdd"
|
319 |
+
input: "layer_128_1_scale1_h/Mul"
|
320 |
+
input: "layer_128_1_scale1_h/add"
|
321 |
+
}
|
322 |
+
node {
|
323 |
+
name: "Relu_2"
|
324 |
+
op: "Relu"
|
325 |
+
input: "layer_128_1_scale1_h/BiasAdd"
|
326 |
+
}
|
327 |
+
node {
|
328 |
+
name: "layer_128_1_conv_expand_h/Conv2D"
|
329 |
+
op: "Conv2D"
|
330 |
+
input: "Relu_2"
|
331 |
+
input: "layer_128_1_conv_expand_h/weights"
|
332 |
+
attr {
|
333 |
+
key: "dilations"
|
334 |
+
value {
|
335 |
+
list {
|
336 |
+
i: 1
|
337 |
+
i: 1
|
338 |
+
i: 1
|
339 |
+
i: 1
|
340 |
+
}
|
341 |
+
}
|
342 |
+
}
|
343 |
+
attr {
|
344 |
+
key: "padding"
|
345 |
+
value {
|
346 |
+
s: "SAME"
|
347 |
+
}
|
348 |
+
}
|
349 |
+
attr {
|
350 |
+
key: "strides"
|
351 |
+
value {
|
352 |
+
list {
|
353 |
+
i: 1
|
354 |
+
i: 2
|
355 |
+
i: 2
|
356 |
+
i: 1
|
357 |
+
}
|
358 |
+
}
|
359 |
+
}
|
360 |
+
}
|
361 |
+
node {
|
362 |
+
name: "layer_128_1_conv1_h/Conv2D"
|
363 |
+
op: "Conv2D"
|
364 |
+
input: "Relu_2"
|
365 |
+
input: "layer_128_1_conv1_h/weights"
|
366 |
+
attr {
|
367 |
+
key: "dilations"
|
368 |
+
value {
|
369 |
+
list {
|
370 |
+
i: 1
|
371 |
+
i: 1
|
372 |
+
i: 1
|
373 |
+
i: 1
|
374 |
+
}
|
375 |
+
}
|
376 |
+
}
|
377 |
+
attr {
|
378 |
+
key: "padding"
|
379 |
+
value {
|
380 |
+
s: "SAME"
|
381 |
+
}
|
382 |
+
}
|
383 |
+
attr {
|
384 |
+
key: "strides"
|
385 |
+
value {
|
386 |
+
list {
|
387 |
+
i: 1
|
388 |
+
i: 2
|
389 |
+
i: 2
|
390 |
+
i: 1
|
391 |
+
}
|
392 |
+
}
|
393 |
+
}
|
394 |
+
}
|
395 |
+
node {
|
396 |
+
name: "layer_128_1_bn2/FusedBatchNorm"
|
397 |
+
op: "BiasAdd"
|
398 |
+
input: "layer_128_1_conv1_h/Conv2D"
|
399 |
+
input: "layer_128_1_conv1_h/Conv2D_bn_offset"
|
400 |
+
}
|
401 |
+
node {
|
402 |
+
name: "layer_128_1_scale2/Mul"
|
403 |
+
op: "Mul"
|
404 |
+
input: "layer_128_1_bn2/FusedBatchNorm"
|
405 |
+
input: "layer_128_1_scale2/mul"
|
406 |
+
}
|
407 |
+
node {
|
408 |
+
name: "layer_128_1_scale2/BiasAdd"
|
409 |
+
op: "BiasAdd"
|
410 |
+
input: "layer_128_1_scale2/Mul"
|
411 |
+
input: "layer_128_1_scale2/add"
|
412 |
+
}
|
413 |
+
node {
|
414 |
+
name: "Relu_3"
|
415 |
+
op: "Relu"
|
416 |
+
input: "layer_128_1_scale2/BiasAdd"
|
417 |
+
}
|
418 |
+
node {
|
419 |
+
name: "layer_128_1_conv2/Conv2D"
|
420 |
+
op: "Conv2D"
|
421 |
+
input: "Relu_3"
|
422 |
+
input: "layer_128_1_conv2/weights"
|
423 |
+
attr {
|
424 |
+
key: "dilations"
|
425 |
+
value {
|
426 |
+
list {
|
427 |
+
i: 1
|
428 |
+
i: 1
|
429 |
+
i: 1
|
430 |
+
i: 1
|
431 |
+
}
|
432 |
+
}
|
433 |
+
}
|
434 |
+
attr {
|
435 |
+
key: "padding"
|
436 |
+
value {
|
437 |
+
s: "SAME"
|
438 |
+
}
|
439 |
+
}
|
440 |
+
attr {
|
441 |
+
key: "strides"
|
442 |
+
value {
|
443 |
+
list {
|
444 |
+
i: 1
|
445 |
+
i: 1
|
446 |
+
i: 1
|
447 |
+
i: 1
|
448 |
+
}
|
449 |
+
}
|
450 |
+
}
|
451 |
+
}
|
452 |
+
node {
|
453 |
+
name: "add_1"
|
454 |
+
op: "Add"
|
455 |
+
input: "layer_128_1_conv2/Conv2D"
|
456 |
+
input: "layer_128_1_conv_expand_h/Conv2D"
|
457 |
+
}
|
458 |
+
node {
|
459 |
+
name: "layer_256_1_bn1/FusedBatchNorm"
|
460 |
+
op: "FusedBatchNorm"
|
461 |
+
input: "add_1"
|
462 |
+
input: "layer_256_1_bn1/gamma"
|
463 |
+
input: "layer_256_1_bn1/beta"
|
464 |
+
input: "layer_256_1_bn1/mean"
|
465 |
+
input: "layer_256_1_bn1/std"
|
466 |
+
attr {
|
467 |
+
key: "epsilon"
|
468 |
+
value {
|
469 |
+
f: 1.00099996416e-05
|
470 |
+
}
|
471 |
+
}
|
472 |
+
}
|
473 |
+
node {
|
474 |
+
name: "layer_256_1_scale1/Mul"
|
475 |
+
op: "Mul"
|
476 |
+
input: "layer_256_1_bn1/FusedBatchNorm"
|
477 |
+
input: "layer_256_1_scale1/mul"
|
478 |
+
}
|
479 |
+
node {
|
480 |
+
name: "layer_256_1_scale1/BiasAdd"
|
481 |
+
op: "BiasAdd"
|
482 |
+
input: "layer_256_1_scale1/Mul"
|
483 |
+
input: "layer_256_1_scale1/add"
|
484 |
+
}
|
485 |
+
node {
|
486 |
+
name: "Relu_4"
|
487 |
+
op: "Relu"
|
488 |
+
input: "layer_256_1_scale1/BiasAdd"
|
489 |
+
}
|
490 |
+
node {
|
491 |
+
name: "SpaceToBatchND_1/paddings"
|
492 |
+
op: "Const"
|
493 |
+
attr {
|
494 |
+
key: "value"
|
495 |
+
value {
|
496 |
+
tensor {
|
497 |
+
dtype: DT_INT32
|
498 |
+
tensor_shape {
|
499 |
+
dim {
|
500 |
+
size: 2
|
501 |
+
}
|
502 |
+
dim {
|
503 |
+
size: 2
|
504 |
+
}
|
505 |
+
}
|
506 |
+
int_val: 1
|
507 |
+
int_val: 1
|
508 |
+
int_val: 1
|
509 |
+
int_val: 1
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
}
|
514 |
+
node {
|
515 |
+
name: "layer_256_1_conv_expand/Conv2D"
|
516 |
+
op: "Conv2D"
|
517 |
+
input: "Relu_4"
|
518 |
+
input: "layer_256_1_conv_expand/weights"
|
519 |
+
attr {
|
520 |
+
key: "dilations"
|
521 |
+
value {
|
522 |
+
list {
|
523 |
+
i: 1
|
524 |
+
i: 1
|
525 |
+
i: 1
|
526 |
+
i: 1
|
527 |
+
}
|
528 |
+
}
|
529 |
+
}
|
530 |
+
attr {
|
531 |
+
key: "padding"
|
532 |
+
value {
|
533 |
+
s: "SAME"
|
534 |
+
}
|
535 |
+
}
|
536 |
+
attr {
|
537 |
+
key: "strides"
|
538 |
+
value {
|
539 |
+
list {
|
540 |
+
i: 1
|
541 |
+
i: 2
|
542 |
+
i: 2
|
543 |
+
i: 1
|
544 |
+
}
|
545 |
+
}
|
546 |
+
}
|
547 |
+
}
|
548 |
+
node {
|
549 |
+
name: "conv4_3_norm/l2_normalize"
|
550 |
+
op: "L2Normalize"
|
551 |
+
input: "Relu_4:0"
|
552 |
+
input: "conv4_3_norm/l2_normalize/Sum/reduction_indices"
|
553 |
+
}
|
554 |
+
node {
|
555 |
+
name: "conv4_3_norm/mul_1"
|
556 |
+
op: "Mul"
|
557 |
+
input: "conv4_3_norm/l2_normalize"
|
558 |
+
input: "conv4_3_norm/mul"
|
559 |
+
}
|
560 |
+
node {
|
561 |
+
name: "conv4_3_norm_mbox_loc/Conv2D"
|
562 |
+
op: "Conv2D"
|
563 |
+
input: "conv4_3_norm/mul_1"
|
564 |
+
input: "conv4_3_norm_mbox_loc/weights"
|
565 |
+
attr {
|
566 |
+
key: "dilations"
|
567 |
+
value {
|
568 |
+
list {
|
569 |
+
i: 1
|
570 |
+
i: 1
|
571 |
+
i: 1
|
572 |
+
i: 1
|
573 |
+
}
|
574 |
+
}
|
575 |
+
}
|
576 |
+
attr {
|
577 |
+
key: "padding"
|
578 |
+
value {
|
579 |
+
s: "SAME"
|
580 |
+
}
|
581 |
+
}
|
582 |
+
attr {
|
583 |
+
key: "strides"
|
584 |
+
value {
|
585 |
+
list {
|
586 |
+
i: 1
|
587 |
+
i: 1
|
588 |
+
i: 1
|
589 |
+
i: 1
|
590 |
+
}
|
591 |
+
}
|
592 |
+
}
|
593 |
+
}
|
594 |
+
node {
|
595 |
+
name: "conv4_3_norm_mbox_loc/BiasAdd"
|
596 |
+
op: "BiasAdd"
|
597 |
+
input: "conv4_3_norm_mbox_loc/Conv2D"
|
598 |
+
input: "conv4_3_norm_mbox_loc/bias"
|
599 |
+
}
|
600 |
+
node {
|
601 |
+
name: "flatten/Reshape"
|
602 |
+
op: "Flatten"
|
603 |
+
input: "conv4_3_norm_mbox_loc/BiasAdd"
|
604 |
+
}
|
605 |
+
node {
|
606 |
+
name: "conv4_3_norm_mbox_conf/Conv2D"
|
607 |
+
op: "Conv2D"
|
608 |
+
input: "conv4_3_norm/mul_1"
|
609 |
+
input: "conv4_3_norm_mbox_conf/weights"
|
610 |
+
attr {
|
611 |
+
key: "dilations"
|
612 |
+
value {
|
613 |
+
list {
|
614 |
+
i: 1
|
615 |
+
i: 1
|
616 |
+
i: 1
|
617 |
+
i: 1
|
618 |
+
}
|
619 |
+
}
|
620 |
+
}
|
621 |
+
attr {
|
622 |
+
key: "padding"
|
623 |
+
value {
|
624 |
+
s: "SAME"
|
625 |
+
}
|
626 |
+
}
|
627 |
+
attr {
|
628 |
+
key: "strides"
|
629 |
+
value {
|
630 |
+
list {
|
631 |
+
i: 1
|
632 |
+
i: 1
|
633 |
+
i: 1
|
634 |
+
i: 1
|
635 |
+
}
|
636 |
+
}
|
637 |
+
}
|
638 |
+
}
|
639 |
+
node {
|
640 |
+
name: "conv4_3_norm_mbox_conf/BiasAdd"
|
641 |
+
op: "BiasAdd"
|
642 |
+
input: "conv4_3_norm_mbox_conf/Conv2D"
|
643 |
+
input: "conv4_3_norm_mbox_conf/bias"
|
644 |
+
}
|
645 |
+
node {
|
646 |
+
name: "flatten_6/Reshape"
|
647 |
+
op: "Flatten"
|
648 |
+
input: "conv4_3_norm_mbox_conf/BiasAdd"
|
649 |
+
}
|
650 |
+
node {
|
651 |
+
name: "Pad_1"
|
652 |
+
op: "SpaceToBatchND"
|
653 |
+
input: "Relu_4"
|
654 |
+
input: "SpaceToBatchND/block_shape"
|
655 |
+
input: "SpaceToBatchND_1/paddings"
|
656 |
+
}
|
657 |
+
node {
|
658 |
+
name: "layer_256_1_conv1/Conv2D"
|
659 |
+
op: "Conv2D"
|
660 |
+
input: "Pad_1"
|
661 |
+
input: "layer_256_1_conv1/weights"
|
662 |
+
attr {
|
663 |
+
key: "dilations"
|
664 |
+
value {
|
665 |
+
list {
|
666 |
+
i: 1
|
667 |
+
i: 1
|
668 |
+
i: 1
|
669 |
+
i: 1
|
670 |
+
}
|
671 |
+
}
|
672 |
+
}
|
673 |
+
attr {
|
674 |
+
key: "padding"
|
675 |
+
value {
|
676 |
+
s: "VALID"
|
677 |
+
}
|
678 |
+
}
|
679 |
+
attr {
|
680 |
+
key: "strides"
|
681 |
+
value {
|
682 |
+
list {
|
683 |
+
i: 1
|
684 |
+
i: 2
|
685 |
+
i: 2
|
686 |
+
i: 1
|
687 |
+
}
|
688 |
+
}
|
689 |
+
}
|
690 |
+
}
|
691 |
+
node {
|
692 |
+
name: "layer_256_1_bn2/FusedBatchNorm"
|
693 |
+
op: "BiasAdd"
|
694 |
+
input: "layer_256_1_conv1/Conv2D"
|
695 |
+
input: "layer_256_1_conv1/Conv2D_bn_offset"
|
696 |
+
}
|
697 |
+
node {
|
698 |
+
name: "BatchToSpaceND_1"
|
699 |
+
op: "BatchToSpaceND"
|
700 |
+
input: "layer_256_1_bn2/FusedBatchNorm"
|
701 |
+
}
|
702 |
+
node {
|
703 |
+
name: "layer_256_1_scale2/Mul"
|
704 |
+
op: "Mul"
|
705 |
+
input: "BatchToSpaceND_1"
|
706 |
+
input: "layer_256_1_scale2/mul"
|
707 |
+
}
|
708 |
+
node {
|
709 |
+
name: "layer_256_1_scale2/BiasAdd"
|
710 |
+
op: "BiasAdd"
|
711 |
+
input: "layer_256_1_scale2/Mul"
|
712 |
+
input: "layer_256_1_scale2/add"
|
713 |
+
}
|
714 |
+
node {
|
715 |
+
name: "Relu_5"
|
716 |
+
op: "Relu"
|
717 |
+
input: "layer_256_1_scale2/BiasAdd"
|
718 |
+
}
|
719 |
+
node {
|
720 |
+
name: "layer_256_1_conv2/Conv2D"
|
721 |
+
op: "Conv2D"
|
722 |
+
input: "Relu_5"
|
723 |
+
input: "layer_256_1_conv2/weights"
|
724 |
+
attr {
|
725 |
+
key: "dilations"
|
726 |
+
value {
|
727 |
+
list {
|
728 |
+
i: 1
|
729 |
+
i: 1
|
730 |
+
i: 1
|
731 |
+
i: 1
|
732 |
+
}
|
733 |
+
}
|
734 |
+
}
|
735 |
+
attr {
|
736 |
+
key: "padding"
|
737 |
+
value {
|
738 |
+
s: "SAME"
|
739 |
+
}
|
740 |
+
}
|
741 |
+
attr {
|
742 |
+
key: "strides"
|
743 |
+
value {
|
744 |
+
list {
|
745 |
+
i: 1
|
746 |
+
i: 1
|
747 |
+
i: 1
|
748 |
+
i: 1
|
749 |
+
}
|
750 |
+
}
|
751 |
+
}
|
752 |
+
}
|
753 |
+
node {
|
754 |
+
name: "add_2"
|
755 |
+
op: "Add"
|
756 |
+
input: "layer_256_1_conv2/Conv2D"
|
757 |
+
input: "layer_256_1_conv_expand/Conv2D"
|
758 |
+
}
|
759 |
+
node {
|
760 |
+
name: "layer_512_1_bn1/FusedBatchNorm"
|
761 |
+
op: "FusedBatchNorm"
|
762 |
+
input: "add_2"
|
763 |
+
input: "layer_512_1_bn1/gamma"
|
764 |
+
input: "layer_512_1_bn1/beta"
|
765 |
+
input: "layer_512_1_bn1/mean"
|
766 |
+
input: "layer_512_1_bn1/std"
|
767 |
+
attr {
|
768 |
+
key: "epsilon"
|
769 |
+
value {
|
770 |
+
f: 1.00099996416e-05
|
771 |
+
}
|
772 |
+
}
|
773 |
+
}
|
774 |
+
node {
|
775 |
+
name: "layer_512_1_scale1/Mul"
|
776 |
+
op: "Mul"
|
777 |
+
input: "layer_512_1_bn1/FusedBatchNorm"
|
778 |
+
input: "layer_512_1_scale1/mul"
|
779 |
+
}
|
780 |
+
node {
|
781 |
+
name: "layer_512_1_scale1/BiasAdd"
|
782 |
+
op: "BiasAdd"
|
783 |
+
input: "layer_512_1_scale1/Mul"
|
784 |
+
input: "layer_512_1_scale1/add"
|
785 |
+
}
|
786 |
+
node {
|
787 |
+
name: "Relu_6"
|
788 |
+
op: "Relu"
|
789 |
+
input: "layer_512_1_scale1/BiasAdd"
|
790 |
+
}
|
791 |
+
node {
|
792 |
+
name: "layer_512_1_conv_expand_h/Conv2D"
|
793 |
+
op: "Conv2D"
|
794 |
+
input: "Relu_6"
|
795 |
+
input: "layer_512_1_conv_expand_h/weights"
|
796 |
+
attr {
|
797 |
+
key: "dilations"
|
798 |
+
value {
|
799 |
+
list {
|
800 |
+
i: 1
|
801 |
+
i: 1
|
802 |
+
i: 1
|
803 |
+
i: 1
|
804 |
+
}
|
805 |
+
}
|
806 |
+
}
|
807 |
+
attr {
|
808 |
+
key: "padding"
|
809 |
+
value {
|
810 |
+
s: "SAME"
|
811 |
+
}
|
812 |
+
}
|
813 |
+
attr {
|
814 |
+
key: "strides"
|
815 |
+
value {
|
816 |
+
list {
|
817 |
+
i: 1
|
818 |
+
i: 1
|
819 |
+
i: 1
|
820 |
+
i: 1
|
821 |
+
}
|
822 |
+
}
|
823 |
+
}
|
824 |
+
}
|
825 |
+
node {
|
826 |
+
name: "layer_512_1_conv1_h/Conv2D"
|
827 |
+
op: "Conv2D"
|
828 |
+
input: "Relu_6"
|
829 |
+
input: "layer_512_1_conv1_h/weights"
|
830 |
+
attr {
|
831 |
+
key: "dilations"
|
832 |
+
value {
|
833 |
+
list {
|
834 |
+
i: 1
|
835 |
+
i: 1
|
836 |
+
i: 1
|
837 |
+
i: 1
|
838 |
+
}
|
839 |
+
}
|
840 |
+
}
|
841 |
+
attr {
|
842 |
+
key: "padding"
|
843 |
+
value {
|
844 |
+
s: "SAME"
|
845 |
+
}
|
846 |
+
}
|
847 |
+
attr {
|
848 |
+
key: "strides"
|
849 |
+
value {
|
850 |
+
list {
|
851 |
+
i: 1
|
852 |
+
i: 1
|
853 |
+
i: 1
|
854 |
+
i: 1
|
855 |
+
}
|
856 |
+
}
|
857 |
+
}
|
858 |
+
}
|
859 |
+
node {
|
860 |
+
name: "layer_512_1_bn2_h/FusedBatchNorm"
|
861 |
+
op: "BiasAdd"
|
862 |
+
input: "layer_512_1_conv1_h/Conv2D"
|
863 |
+
input: "layer_512_1_conv1_h/Conv2D_bn_offset"
|
864 |
+
}
|
865 |
+
node {
|
866 |
+
name: "layer_512_1_scale2_h/Mul"
|
867 |
+
op: "Mul"
|
868 |
+
input: "layer_512_1_bn2_h/FusedBatchNorm"
|
869 |
+
input: "layer_512_1_scale2_h/mul"
|
870 |
+
}
|
871 |
+
node {
|
872 |
+
name: "layer_512_1_scale2_h/BiasAdd"
|
873 |
+
op: "BiasAdd"
|
874 |
+
input: "layer_512_1_scale2_h/Mul"
|
875 |
+
input: "layer_512_1_scale2_h/add"
|
876 |
+
}
|
877 |
+
node {
|
878 |
+
name: "Relu_7"
|
879 |
+
op: "Relu"
|
880 |
+
input: "layer_512_1_scale2_h/BiasAdd"
|
881 |
+
}
|
882 |
+
node {
|
883 |
+
name: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
|
884 |
+
op: "SpaceToBatchND"
|
885 |
+
input: "Relu_7"
|
886 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/block_shape"
|
887 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND/paddings"
|
888 |
+
}
|
889 |
+
node {
|
890 |
+
name: "layer_512_1_conv2_h/convolution"
|
891 |
+
op: "Conv2D"
|
892 |
+
input: "layer_512_1_conv2_h/convolution/SpaceToBatchND"
|
893 |
+
input: "layer_512_1_conv2_h/weights"
|
894 |
+
attr {
|
895 |
+
key: "dilations"
|
896 |
+
value {
|
897 |
+
list {
|
898 |
+
i: 1
|
899 |
+
i: 1
|
900 |
+
i: 1
|
901 |
+
i: 1
|
902 |
+
}
|
903 |
+
}
|
904 |
+
}
|
905 |
+
attr {
|
906 |
+
key: "padding"
|
907 |
+
value {
|
908 |
+
s: "VALID"
|
909 |
+
}
|
910 |
+
}
|
911 |
+
attr {
|
912 |
+
key: "strides"
|
913 |
+
value {
|
914 |
+
list {
|
915 |
+
i: 1
|
916 |
+
i: 1
|
917 |
+
i: 1
|
918 |
+
i: 1
|
919 |
+
}
|
920 |
+
}
|
921 |
+
}
|
922 |
+
}
|
923 |
+
node {
|
924 |
+
name: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
|
925 |
+
op: "BatchToSpaceND"
|
926 |
+
input: "layer_512_1_conv2_h/convolution"
|
927 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/block_shape"
|
928 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND/crops"
|
929 |
+
}
|
930 |
+
node {
|
931 |
+
name: "add_3"
|
932 |
+
op: "Add"
|
933 |
+
input: "layer_512_1_conv2_h/convolution/BatchToSpaceND"
|
934 |
+
input: "layer_512_1_conv_expand_h/Conv2D"
|
935 |
+
}
|
936 |
+
node {
|
937 |
+
name: "last_bn_h/FusedBatchNorm"
|
938 |
+
op: "FusedBatchNorm"
|
939 |
+
input: "add_3"
|
940 |
+
input: "last_bn_h/gamma"
|
941 |
+
input: "last_bn_h/beta"
|
942 |
+
input: "last_bn_h/mean"
|
943 |
+
input: "last_bn_h/std"
|
944 |
+
attr {
|
945 |
+
key: "epsilon"
|
946 |
+
value {
|
947 |
+
f: 1.00099996416e-05
|
948 |
+
}
|
949 |
+
}
|
950 |
+
}
|
951 |
+
node {
|
952 |
+
name: "last_scale_h/Mul"
|
953 |
+
op: "Mul"
|
954 |
+
input: "last_bn_h/FusedBatchNorm"
|
955 |
+
input: "last_scale_h/mul"
|
956 |
+
}
|
957 |
+
node {
|
958 |
+
name: "last_scale_h/BiasAdd"
|
959 |
+
op: "BiasAdd"
|
960 |
+
input: "last_scale_h/Mul"
|
961 |
+
input: "last_scale_h/add"
|
962 |
+
}
|
963 |
+
node {
|
964 |
+
name: "last_relu"
|
965 |
+
op: "Relu"
|
966 |
+
input: "last_scale_h/BiasAdd"
|
967 |
+
}
|
968 |
+
node {
|
969 |
+
name: "conv6_1_h/Conv2D"
|
970 |
+
op: "Conv2D"
|
971 |
+
input: "last_relu"
|
972 |
+
input: "conv6_1_h/weights"
|
973 |
+
attr {
|
974 |
+
key: "dilations"
|
975 |
+
value {
|
976 |
+
list {
|
977 |
+
i: 1
|
978 |
+
i: 1
|
979 |
+
i: 1
|
980 |
+
i: 1
|
981 |
+
}
|
982 |
+
}
|
983 |
+
}
|
984 |
+
attr {
|
985 |
+
key: "padding"
|
986 |
+
value {
|
987 |
+
s: "SAME"
|
988 |
+
}
|
989 |
+
}
|
990 |
+
attr {
|
991 |
+
key: "strides"
|
992 |
+
value {
|
993 |
+
list {
|
994 |
+
i: 1
|
995 |
+
i: 1
|
996 |
+
i: 1
|
997 |
+
i: 1
|
998 |
+
}
|
999 |
+
}
|
1000 |
+
}
|
1001 |
+
}
|
1002 |
+
node {
|
1003 |
+
name: "conv6_1_h/BiasAdd"
|
1004 |
+
op: "BiasAdd"
|
1005 |
+
input: "conv6_1_h/Conv2D"
|
1006 |
+
input: "conv6_1_h/bias"
|
1007 |
+
}
|
1008 |
+
node {
|
1009 |
+
name: "conv6_1_h/Relu"
|
1010 |
+
op: "Relu"
|
1011 |
+
input: "conv6_1_h/BiasAdd"
|
1012 |
+
}
|
1013 |
+
node {
|
1014 |
+
name: "conv6_2_h/Conv2D"
|
1015 |
+
op: "Conv2D"
|
1016 |
+
input: "conv6_1_h/Relu"
|
1017 |
+
input: "conv6_2_h/weights"
|
1018 |
+
attr {
|
1019 |
+
key: "dilations"
|
1020 |
+
value {
|
1021 |
+
list {
|
1022 |
+
i: 1
|
1023 |
+
i: 1
|
1024 |
+
i: 1
|
1025 |
+
i: 1
|
1026 |
+
}
|
1027 |
+
}
|
1028 |
+
}
|
1029 |
+
attr {
|
1030 |
+
key: "padding"
|
1031 |
+
value {
|
1032 |
+
s: "SAME"
|
1033 |
+
}
|
1034 |
+
}
|
1035 |
+
attr {
|
1036 |
+
key: "strides"
|
1037 |
+
value {
|
1038 |
+
list {
|
1039 |
+
i: 1
|
1040 |
+
i: 2
|
1041 |
+
i: 2
|
1042 |
+
i: 1
|
1043 |
+
}
|
1044 |
+
}
|
1045 |
+
}
|
1046 |
+
}
|
1047 |
+
node {
|
1048 |
+
name: "conv6_2_h/BiasAdd"
|
1049 |
+
op: "BiasAdd"
|
1050 |
+
input: "conv6_2_h/Conv2D"
|
1051 |
+
input: "conv6_2_h/bias"
|
1052 |
+
}
|
1053 |
+
node {
|
1054 |
+
name: "conv6_2_h/Relu"
|
1055 |
+
op: "Relu"
|
1056 |
+
input: "conv6_2_h/BiasAdd"
|
1057 |
+
}
|
1058 |
+
node {
|
1059 |
+
name: "conv7_1_h/Conv2D"
|
1060 |
+
op: "Conv2D"
|
1061 |
+
input: "conv6_2_h/Relu"
|
1062 |
+
input: "conv7_1_h/weights"
|
1063 |
+
attr {
|
1064 |
+
key: "dilations"
|
1065 |
+
value {
|
1066 |
+
list {
|
1067 |
+
i: 1
|
1068 |
+
i: 1
|
1069 |
+
i: 1
|
1070 |
+
i: 1
|
1071 |
+
}
|
1072 |
+
}
|
1073 |
+
}
|
1074 |
+
attr {
|
1075 |
+
key: "padding"
|
1076 |
+
value {
|
1077 |
+
s: "SAME"
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
attr {
|
1081 |
+
key: "strides"
|
1082 |
+
value {
|
1083 |
+
list {
|
1084 |
+
i: 1
|
1085 |
+
i: 1
|
1086 |
+
i: 1
|
1087 |
+
i: 1
|
1088 |
+
}
|
1089 |
+
}
|
1090 |
+
}
|
1091 |
+
}
|
1092 |
+
node {
|
1093 |
+
name: "conv7_1_h/BiasAdd"
|
1094 |
+
op: "BiasAdd"
|
1095 |
+
input: "conv7_1_h/Conv2D"
|
1096 |
+
input: "conv7_1_h/bias"
|
1097 |
+
}
|
1098 |
+
node {
|
1099 |
+
name: "conv7_1_h/Relu"
|
1100 |
+
op: "Relu"
|
1101 |
+
input: "conv7_1_h/BiasAdd"
|
1102 |
+
}
|
1103 |
+
node {
|
1104 |
+
name: "Pad_2"
|
1105 |
+
op: "SpaceToBatchND"
|
1106 |
+
input: "conv7_1_h/Relu"
|
1107 |
+
input: "SpaceToBatchND/block_shape"
|
1108 |
+
input: "SpaceToBatchND_1/paddings"
|
1109 |
+
}
|
1110 |
+
node {
|
1111 |
+
name: "conv7_2_h/Conv2D"
|
1112 |
+
op: "Conv2D"
|
1113 |
+
input: "Pad_2"
|
1114 |
+
input: "conv7_2_h/weights"
|
1115 |
+
attr {
|
1116 |
+
key: "dilations"
|
1117 |
+
value {
|
1118 |
+
list {
|
1119 |
+
i: 1
|
1120 |
+
i: 1
|
1121 |
+
i: 1
|
1122 |
+
i: 1
|
1123 |
+
}
|
1124 |
+
}
|
1125 |
+
}
|
1126 |
+
attr {
|
1127 |
+
key: "padding"
|
1128 |
+
value {
|
1129 |
+
s: "VALID"
|
1130 |
+
}
|
1131 |
+
}
|
1132 |
+
attr {
|
1133 |
+
key: "strides"
|
1134 |
+
value {
|
1135 |
+
list {
|
1136 |
+
i: 1
|
1137 |
+
i: 2
|
1138 |
+
i: 2
|
1139 |
+
i: 1
|
1140 |
+
}
|
1141 |
+
}
|
1142 |
+
}
|
1143 |
+
}
|
1144 |
+
node {
|
1145 |
+
name: "conv7_2_h/BiasAdd"
|
1146 |
+
op: "BiasAdd"
|
1147 |
+
input: "conv7_2_h/Conv2D"
|
1148 |
+
input: "conv7_2_h/bias"
|
1149 |
+
}
|
1150 |
+
node {
|
1151 |
+
name: "BatchToSpaceND_2"
|
1152 |
+
op: "BatchToSpaceND"
|
1153 |
+
input: "conv7_2_h/BiasAdd"
|
1154 |
+
}
|
1155 |
+
node {
|
1156 |
+
name: "conv7_2_h/Relu"
|
1157 |
+
op: "Relu"
|
1158 |
+
input: "BatchToSpaceND_2"
|
1159 |
+
}
|
1160 |
+
node {
|
1161 |
+
name: "conv8_1_h/Conv2D"
|
1162 |
+
op: "Conv2D"
|
1163 |
+
input: "conv7_2_h/Relu"
|
1164 |
+
input: "conv8_1_h/weights"
|
1165 |
+
attr {
|
1166 |
+
key: "dilations"
|
1167 |
+
value {
|
1168 |
+
list {
|
1169 |
+
i: 1
|
1170 |
+
i: 1
|
1171 |
+
i: 1
|
1172 |
+
i: 1
|
1173 |
+
}
|
1174 |
+
}
|
1175 |
+
}
|
1176 |
+
attr {
|
1177 |
+
key: "padding"
|
1178 |
+
value {
|
1179 |
+
s: "SAME"
|
1180 |
+
}
|
1181 |
+
}
|
1182 |
+
attr {
|
1183 |
+
key: "strides"
|
1184 |
+
value {
|
1185 |
+
list {
|
1186 |
+
i: 1
|
1187 |
+
i: 1
|
1188 |
+
i: 1
|
1189 |
+
i: 1
|
1190 |
+
}
|
1191 |
+
}
|
1192 |
+
}
|
1193 |
+
}
|
1194 |
+
node {
|
1195 |
+
name: "conv8_1_h/BiasAdd"
|
1196 |
+
op: "BiasAdd"
|
1197 |
+
input: "conv8_1_h/Conv2D"
|
1198 |
+
input: "conv8_1_h/bias"
|
1199 |
+
}
|
1200 |
+
node {
|
1201 |
+
name: "conv8_1_h/Relu"
|
1202 |
+
op: "Relu"
|
1203 |
+
input: "conv8_1_h/BiasAdd"
|
1204 |
+
}
|
1205 |
+
node {
|
1206 |
+
name: "conv8_2_h/Conv2D"
|
1207 |
+
op: "Conv2D"
|
1208 |
+
input: "conv8_1_h/Relu"
|
1209 |
+
input: "conv8_2_h/weights"
|
1210 |
+
attr {
|
1211 |
+
key: "dilations"
|
1212 |
+
value {
|
1213 |
+
list {
|
1214 |
+
i: 1
|
1215 |
+
i: 1
|
1216 |
+
i: 1
|
1217 |
+
i: 1
|
1218 |
+
}
|
1219 |
+
}
|
1220 |
+
}
|
1221 |
+
attr {
|
1222 |
+
key: "padding"
|
1223 |
+
value {
|
1224 |
+
s: "SAME"
|
1225 |
+
}
|
1226 |
+
}
|
1227 |
+
attr {
|
1228 |
+
key: "strides"
|
1229 |
+
value {
|
1230 |
+
list {
|
1231 |
+
i: 1
|
1232 |
+
i: 1
|
1233 |
+
i: 1
|
1234 |
+
i: 1
|
1235 |
+
}
|
1236 |
+
}
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
node {
|
1240 |
+
name: "conv8_2_h/BiasAdd"
|
1241 |
+
op: "BiasAdd"
|
1242 |
+
input: "conv8_2_h/Conv2D"
|
1243 |
+
input: "conv8_2_h/bias"
|
1244 |
+
}
|
1245 |
+
node {
|
1246 |
+
name: "conv8_2_h/Relu"
|
1247 |
+
op: "Relu"
|
1248 |
+
input: "conv8_2_h/BiasAdd"
|
1249 |
+
}
|
1250 |
+
node {
|
1251 |
+
name: "conv9_1_h/Conv2D"
|
1252 |
+
op: "Conv2D"
|
1253 |
+
input: "conv8_2_h/Relu"
|
1254 |
+
input: "conv9_1_h/weights"
|
1255 |
+
attr {
|
1256 |
+
key: "dilations"
|
1257 |
+
value {
|
1258 |
+
list {
|
1259 |
+
i: 1
|
1260 |
+
i: 1
|
1261 |
+
i: 1
|
1262 |
+
i: 1
|
1263 |
+
}
|
1264 |
+
}
|
1265 |
+
}
|
1266 |
+
attr {
|
1267 |
+
key: "padding"
|
1268 |
+
value {
|
1269 |
+
s: "SAME"
|
1270 |
+
}
|
1271 |
+
}
|
1272 |
+
attr {
|
1273 |
+
key: "strides"
|
1274 |
+
value {
|
1275 |
+
list {
|
1276 |
+
i: 1
|
1277 |
+
i: 1
|
1278 |
+
i: 1
|
1279 |
+
i: 1
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
}
|
1283 |
+
}
|
1284 |
+
node {
|
1285 |
+
name: "conv9_1_h/BiasAdd"
|
1286 |
+
op: "BiasAdd"
|
1287 |
+
input: "conv9_1_h/Conv2D"
|
1288 |
+
input: "conv9_1_h/bias"
|
1289 |
+
}
|
1290 |
+
node {
|
1291 |
+
name: "conv9_1_h/Relu"
|
1292 |
+
op: "Relu"
|
1293 |
+
input: "conv9_1_h/BiasAdd"
|
1294 |
+
}
|
1295 |
+
node {
|
1296 |
+
name: "conv9_2_h/Conv2D"
|
1297 |
+
op: "Conv2D"
|
1298 |
+
input: "conv9_1_h/Relu"
|
1299 |
+
input: "conv9_2_h/weights"
|
1300 |
+
attr {
|
1301 |
+
key: "dilations"
|
1302 |
+
value {
|
1303 |
+
list {
|
1304 |
+
i: 1
|
1305 |
+
i: 1
|
1306 |
+
i: 1
|
1307 |
+
i: 1
|
1308 |
+
}
|
1309 |
+
}
|
1310 |
+
}
|
1311 |
+
attr {
|
1312 |
+
key: "padding"
|
1313 |
+
value {
|
1314 |
+
s: "SAME"
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
+
attr {
|
1318 |
+
key: "strides"
|
1319 |
+
value {
|
1320 |
+
list {
|
1321 |
+
i: 1
|
1322 |
+
i: 1
|
1323 |
+
i: 1
|
1324 |
+
i: 1
|
1325 |
+
}
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
}
|
1329 |
+
node {
|
1330 |
+
name: "conv9_2_h/BiasAdd"
|
1331 |
+
op: "BiasAdd"
|
1332 |
+
input: "conv9_2_h/Conv2D"
|
1333 |
+
input: "conv9_2_h/bias"
|
1334 |
+
}
|
1335 |
+
node {
|
1336 |
+
name: "conv9_2_h/Relu"
|
1337 |
+
op: "Relu"
|
1338 |
+
input: "conv9_2_h/BiasAdd"
|
1339 |
+
}
|
1340 |
+
node {
|
1341 |
+
name: "conv9_2_mbox_loc/Conv2D"
|
1342 |
+
op: "Conv2D"
|
1343 |
+
input: "conv9_2_h/Relu"
|
1344 |
+
input: "conv9_2_mbox_loc/weights"
|
1345 |
+
attr {
|
1346 |
+
key: "dilations"
|
1347 |
+
value {
|
1348 |
+
list {
|
1349 |
+
i: 1
|
1350 |
+
i: 1
|
1351 |
+
i: 1
|
1352 |
+
i: 1
|
1353 |
+
}
|
1354 |
+
}
|
1355 |
+
}
|
1356 |
+
attr {
|
1357 |
+
key: "padding"
|
1358 |
+
value {
|
1359 |
+
s: "SAME"
|
1360 |
+
}
|
1361 |
+
}
|
1362 |
+
attr {
|
1363 |
+
key: "strides"
|
1364 |
+
value {
|
1365 |
+
list {
|
1366 |
+
i: 1
|
1367 |
+
i: 1
|
1368 |
+
i: 1
|
1369 |
+
i: 1
|
1370 |
+
}
|
1371 |
+
}
|
1372 |
+
}
|
1373 |
+
}
|
1374 |
+
node {
|
1375 |
+
name: "conv9_2_mbox_loc/BiasAdd"
|
1376 |
+
op: "BiasAdd"
|
1377 |
+
input: "conv9_2_mbox_loc/Conv2D"
|
1378 |
+
input: "conv9_2_mbox_loc/bias"
|
1379 |
+
}
|
1380 |
+
node {
|
1381 |
+
name: "flatten_5/Reshape"
|
1382 |
+
op: "Flatten"
|
1383 |
+
input: "conv9_2_mbox_loc/BiasAdd"
|
1384 |
+
}
|
1385 |
+
node {
|
1386 |
+
name: "conv9_2_mbox_conf/Conv2D"
|
1387 |
+
op: "Conv2D"
|
1388 |
+
input: "conv9_2_h/Relu"
|
1389 |
+
input: "conv9_2_mbox_conf/weights"
|
1390 |
+
attr {
|
1391 |
+
key: "dilations"
|
1392 |
+
value {
|
1393 |
+
list {
|
1394 |
+
i: 1
|
1395 |
+
i: 1
|
1396 |
+
i: 1
|
1397 |
+
i: 1
|
1398 |
+
}
|
1399 |
+
}
|
1400 |
+
}
|
1401 |
+
attr {
|
1402 |
+
key: "padding"
|
1403 |
+
value {
|
1404 |
+
s: "SAME"
|
1405 |
+
}
|
1406 |
+
}
|
1407 |
+
attr {
|
1408 |
+
key: "strides"
|
1409 |
+
value {
|
1410 |
+
list {
|
1411 |
+
i: 1
|
1412 |
+
i: 1
|
1413 |
+
i: 1
|
1414 |
+
i: 1
|
1415 |
+
}
|
1416 |
+
}
|
1417 |
+
}
|
1418 |
+
}
|
1419 |
+
node {
|
1420 |
+
name: "conv9_2_mbox_conf/BiasAdd"
|
1421 |
+
op: "BiasAdd"
|
1422 |
+
input: "conv9_2_mbox_conf/Conv2D"
|
1423 |
+
input: "conv9_2_mbox_conf/bias"
|
1424 |
+
}
|
1425 |
+
node {
|
1426 |
+
name: "flatten_11/Reshape"
|
1427 |
+
op: "Flatten"
|
1428 |
+
input: "conv9_2_mbox_conf/BiasAdd"
|
1429 |
+
}
|
1430 |
+
node {
|
1431 |
+
name: "conv8_2_mbox_loc/Conv2D"
|
1432 |
+
op: "Conv2D"
|
1433 |
+
input: "conv8_2_h/Relu"
|
1434 |
+
input: "conv8_2_mbox_loc/weights"
|
1435 |
+
attr {
|
1436 |
+
key: "dilations"
|
1437 |
+
value {
|
1438 |
+
list {
|
1439 |
+
i: 1
|
1440 |
+
i: 1
|
1441 |
+
i: 1
|
1442 |
+
i: 1
|
1443 |
+
}
|
1444 |
+
}
|
1445 |
+
}
|
1446 |
+
attr {
|
1447 |
+
key: "padding"
|
1448 |
+
value {
|
1449 |
+
s: "SAME"
|
1450 |
+
}
|
1451 |
+
}
|
1452 |
+
attr {
|
1453 |
+
key: "strides"
|
1454 |
+
value {
|
1455 |
+
list {
|
1456 |
+
i: 1
|
1457 |
+
i: 1
|
1458 |
+
i: 1
|
1459 |
+
i: 1
|
1460 |
+
}
|
1461 |
+
}
|
1462 |
+
}
|
1463 |
+
}
|
1464 |
+
node {
|
1465 |
+
name: "conv8_2_mbox_loc/BiasAdd"
|
1466 |
+
op: "BiasAdd"
|
1467 |
+
input: "conv8_2_mbox_loc/Conv2D"
|
1468 |
+
input: "conv8_2_mbox_loc/bias"
|
1469 |
+
}
|
1470 |
+
node {
|
1471 |
+
name: "flatten_4/Reshape"
|
1472 |
+
op: "Flatten"
|
1473 |
+
input: "conv8_2_mbox_loc/BiasAdd"
|
1474 |
+
}
|
1475 |
+
node {
|
1476 |
+
name: "conv8_2_mbox_conf/Conv2D"
|
1477 |
+
op: "Conv2D"
|
1478 |
+
input: "conv8_2_h/Relu"
|
1479 |
+
input: "conv8_2_mbox_conf/weights"
|
1480 |
+
attr {
|
1481 |
+
key: "dilations"
|
1482 |
+
value {
|
1483 |
+
list {
|
1484 |
+
i: 1
|
1485 |
+
i: 1
|
1486 |
+
i: 1
|
1487 |
+
i: 1
|
1488 |
+
}
|
1489 |
+
}
|
1490 |
+
}
|
1491 |
+
attr {
|
1492 |
+
key: "padding"
|
1493 |
+
value {
|
1494 |
+
s: "SAME"
|
1495 |
+
}
|
1496 |
+
}
|
1497 |
+
attr {
|
1498 |
+
key: "strides"
|
1499 |
+
value {
|
1500 |
+
list {
|
1501 |
+
i: 1
|
1502 |
+
i: 1
|
1503 |
+
i: 1
|
1504 |
+
i: 1
|
1505 |
+
}
|
1506 |
+
}
|
1507 |
+
}
|
1508 |
+
}
|
1509 |
+
node {
|
1510 |
+
name: "conv8_2_mbox_conf/BiasAdd"
|
1511 |
+
op: "BiasAdd"
|
1512 |
+
input: "conv8_2_mbox_conf/Conv2D"
|
1513 |
+
input: "conv8_2_mbox_conf/bias"
|
1514 |
+
}
|
1515 |
+
node {
|
1516 |
+
name: "flatten_10/Reshape"
|
1517 |
+
op: "Flatten"
|
1518 |
+
input: "conv8_2_mbox_conf/BiasAdd"
|
1519 |
+
}
|
1520 |
+
node {
|
1521 |
+
name: "conv7_2_mbox_loc/Conv2D"
|
1522 |
+
op: "Conv2D"
|
1523 |
+
input: "conv7_2_h/Relu"
|
1524 |
+
input: "conv7_2_mbox_loc/weights"
|
1525 |
+
attr {
|
1526 |
+
key: "dilations"
|
1527 |
+
value {
|
1528 |
+
list {
|
1529 |
+
i: 1
|
1530 |
+
i: 1
|
1531 |
+
i: 1
|
1532 |
+
i: 1
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
}
|
1536 |
+
attr {
|
1537 |
+
key: "padding"
|
1538 |
+
value {
|
1539 |
+
s: "SAME"
|
1540 |
+
}
|
1541 |
+
}
|
1542 |
+
attr {
|
1543 |
+
key: "strides"
|
1544 |
+
value {
|
1545 |
+
list {
|
1546 |
+
i: 1
|
1547 |
+
i: 1
|
1548 |
+
i: 1
|
1549 |
+
i: 1
|
1550 |
+
}
|
1551 |
+
}
|
1552 |
+
}
|
1553 |
+
}
|
1554 |
+
node {
|
1555 |
+
name: "conv7_2_mbox_loc/BiasAdd"
|
1556 |
+
op: "BiasAdd"
|
1557 |
+
input: "conv7_2_mbox_loc/Conv2D"
|
1558 |
+
input: "conv7_2_mbox_loc/bias"
|
1559 |
+
}
|
1560 |
+
node {
|
1561 |
+
name: "flatten_3/Reshape"
|
1562 |
+
op: "Flatten"
|
1563 |
+
input: "conv7_2_mbox_loc/BiasAdd"
|
1564 |
+
}
|
1565 |
+
node {
|
1566 |
+
name: "conv7_2_mbox_conf/Conv2D"
|
1567 |
+
op: "Conv2D"
|
1568 |
+
input: "conv7_2_h/Relu"
|
1569 |
+
input: "conv7_2_mbox_conf/weights"
|
1570 |
+
attr {
|
1571 |
+
key: "dilations"
|
1572 |
+
value {
|
1573 |
+
list {
|
1574 |
+
i: 1
|
1575 |
+
i: 1
|
1576 |
+
i: 1
|
1577 |
+
i: 1
|
1578 |
+
}
|
1579 |
+
}
|
1580 |
+
}
|
1581 |
+
attr {
|
1582 |
+
key: "padding"
|
1583 |
+
value {
|
1584 |
+
s: "SAME"
|
1585 |
+
}
|
1586 |
+
}
|
1587 |
+
attr {
|
1588 |
+
key: "strides"
|
1589 |
+
value {
|
1590 |
+
list {
|
1591 |
+
i: 1
|
1592 |
+
i: 1
|
1593 |
+
i: 1
|
1594 |
+
i: 1
|
1595 |
+
}
|
1596 |
+
}
|
1597 |
+
}
|
1598 |
+
}
|
1599 |
+
node {
|
1600 |
+
name: "conv7_2_mbox_conf/BiasAdd"
|
1601 |
+
op: "BiasAdd"
|
1602 |
+
input: "conv7_2_mbox_conf/Conv2D"
|
1603 |
+
input: "conv7_2_mbox_conf/bias"
|
1604 |
+
}
|
1605 |
+
node {
|
1606 |
+
name: "flatten_9/Reshape"
|
1607 |
+
op: "Flatten"
|
1608 |
+
input: "conv7_2_mbox_conf/BiasAdd"
|
1609 |
+
}
|
1610 |
+
node {
|
1611 |
+
name: "conv6_2_mbox_loc/Conv2D"
|
1612 |
+
op: "Conv2D"
|
1613 |
+
input: "conv6_2_h/Relu"
|
1614 |
+
input: "conv6_2_mbox_loc/weights"
|
1615 |
+
attr {
|
1616 |
+
key: "dilations"
|
1617 |
+
value {
|
1618 |
+
list {
|
1619 |
+
i: 1
|
1620 |
+
i: 1
|
1621 |
+
i: 1
|
1622 |
+
i: 1
|
1623 |
+
}
|
1624 |
+
}
|
1625 |
+
}
|
1626 |
+
attr {
|
1627 |
+
key: "padding"
|
1628 |
+
value {
|
1629 |
+
s: "SAME"
|
1630 |
+
}
|
1631 |
+
}
|
1632 |
+
attr {
|
1633 |
+
key: "strides"
|
1634 |
+
value {
|
1635 |
+
list {
|
1636 |
+
i: 1
|
1637 |
+
i: 1
|
1638 |
+
i: 1
|
1639 |
+
i: 1
|
1640 |
+
}
|
1641 |
+
}
|
1642 |
+
}
|
1643 |
+
}
|
1644 |
+
node {
|
1645 |
+
name: "conv6_2_mbox_loc/BiasAdd"
|
1646 |
+
op: "BiasAdd"
|
1647 |
+
input: "conv6_2_mbox_loc/Conv2D"
|
1648 |
+
input: "conv6_2_mbox_loc/bias"
|
1649 |
+
}
|
1650 |
+
node {
|
1651 |
+
name: "flatten_2/Reshape"
|
1652 |
+
op: "Flatten"
|
1653 |
+
input: "conv6_2_mbox_loc/BiasAdd"
|
1654 |
+
}
|
1655 |
+
node {
|
1656 |
+
name: "conv6_2_mbox_conf/Conv2D"
|
1657 |
+
op: "Conv2D"
|
1658 |
+
input: "conv6_2_h/Relu"
|
1659 |
+
input: "conv6_2_mbox_conf/weights"
|
1660 |
+
attr {
|
1661 |
+
key: "dilations"
|
1662 |
+
value {
|
1663 |
+
list {
|
1664 |
+
i: 1
|
1665 |
+
i: 1
|
1666 |
+
i: 1
|
1667 |
+
i: 1
|
1668 |
+
}
|
1669 |
+
}
|
1670 |
+
}
|
1671 |
+
attr {
|
1672 |
+
key: "padding"
|
1673 |
+
value {
|
1674 |
+
s: "SAME"
|
1675 |
+
}
|
1676 |
+
}
|
1677 |
+
attr {
|
1678 |
+
key: "strides"
|
1679 |
+
value {
|
1680 |
+
list {
|
1681 |
+
i: 1
|
1682 |
+
i: 1
|
1683 |
+
i: 1
|
1684 |
+
i: 1
|
1685 |
+
}
|
1686 |
+
}
|
1687 |
+
}
|
1688 |
+
}
|
1689 |
+
node {
|
1690 |
+
name: "conv6_2_mbox_conf/BiasAdd"
|
1691 |
+
op: "BiasAdd"
|
1692 |
+
input: "conv6_2_mbox_conf/Conv2D"
|
1693 |
+
input: "conv6_2_mbox_conf/bias"
|
1694 |
+
}
|
1695 |
+
node {
|
1696 |
+
name: "flatten_8/Reshape"
|
1697 |
+
op: "Flatten"
|
1698 |
+
input: "conv6_2_mbox_conf/BiasAdd"
|
1699 |
+
}
|
1700 |
+
node {
|
1701 |
+
name: "fc7_mbox_loc/Conv2D"
|
1702 |
+
op: "Conv2D"
|
1703 |
+
input: "last_relu"
|
1704 |
+
input: "fc7_mbox_loc/weights"
|
1705 |
+
attr {
|
1706 |
+
key: "dilations"
|
1707 |
+
value {
|
1708 |
+
list {
|
1709 |
+
i: 1
|
1710 |
+
i: 1
|
1711 |
+
i: 1
|
1712 |
+
i: 1
|
1713 |
+
}
|
1714 |
+
}
|
1715 |
+
}
|
1716 |
+
attr {
|
1717 |
+
key: "padding"
|
1718 |
+
value {
|
1719 |
+
s: "SAME"
|
1720 |
+
}
|
1721 |
+
}
|
1722 |
+
attr {
|
1723 |
+
key: "strides"
|
1724 |
+
value {
|
1725 |
+
list {
|
1726 |
+
i: 1
|
1727 |
+
i: 1
|
1728 |
+
i: 1
|
1729 |
+
i: 1
|
1730 |
+
}
|
1731 |
+
}
|
1732 |
+
}
|
1733 |
+
}
|
1734 |
+
node {
|
1735 |
+
name: "fc7_mbox_loc/BiasAdd"
|
1736 |
+
op: "BiasAdd"
|
1737 |
+
input: "fc7_mbox_loc/Conv2D"
|
1738 |
+
input: "fc7_mbox_loc/bias"
|
1739 |
+
}
|
1740 |
+
node {
|
1741 |
+
name: "flatten_1/Reshape"
|
1742 |
+
op: "Flatten"
|
1743 |
+
input: "fc7_mbox_loc/BiasAdd"
|
1744 |
+
}
|
1745 |
+
node {
|
1746 |
+
name: "mbox_loc"
|
1747 |
+
op: "ConcatV2"
|
1748 |
+
input: "flatten/Reshape"
|
1749 |
+
input: "flatten_1/Reshape"
|
1750 |
+
input: "flatten_2/Reshape"
|
1751 |
+
input: "flatten_3/Reshape"
|
1752 |
+
input: "flatten_4/Reshape"
|
1753 |
+
input: "flatten_5/Reshape"
|
1754 |
+
input: "mbox_loc/axis"
|
1755 |
+
}
|
1756 |
+
node {
|
1757 |
+
name: "fc7_mbox_conf/Conv2D"
|
1758 |
+
op: "Conv2D"
|
1759 |
+
input: "last_relu"
|
1760 |
+
input: "fc7_mbox_conf/weights"
|
1761 |
+
attr {
|
1762 |
+
key: "dilations"
|
1763 |
+
value {
|
1764 |
+
list {
|
1765 |
+
i: 1
|
1766 |
+
i: 1
|
1767 |
+
i: 1
|
1768 |
+
i: 1
|
1769 |
+
}
|
1770 |
+
}
|
1771 |
+
}
|
1772 |
+
attr {
|
1773 |
+
key: "padding"
|
1774 |
+
value {
|
1775 |
+
s: "SAME"
|
1776 |
+
}
|
1777 |
+
}
|
1778 |
+
attr {
|
1779 |
+
key: "strides"
|
1780 |
+
value {
|
1781 |
+
list {
|
1782 |
+
i: 1
|
1783 |
+
i: 1
|
1784 |
+
i: 1
|
1785 |
+
i: 1
|
1786 |
+
}
|
1787 |
+
}
|
1788 |
+
}
|
1789 |
+
}
|
1790 |
+
node {
|
1791 |
+
name: "fc7_mbox_conf/BiasAdd"
|
1792 |
+
op: "BiasAdd"
|
1793 |
+
input: "fc7_mbox_conf/Conv2D"
|
1794 |
+
input: "fc7_mbox_conf/bias"
|
1795 |
+
}
|
1796 |
+
node {
|
1797 |
+
name: "flatten_7/Reshape"
|
1798 |
+
op: "Flatten"
|
1799 |
+
input: "fc7_mbox_conf/BiasAdd"
|
1800 |
+
}
|
1801 |
+
node {
|
1802 |
+
name: "mbox_conf"
|
1803 |
+
op: "ConcatV2"
|
1804 |
+
input: "flatten_6/Reshape"
|
1805 |
+
input: "flatten_7/Reshape"
|
1806 |
+
input: "flatten_8/Reshape"
|
1807 |
+
input: "flatten_9/Reshape"
|
1808 |
+
input: "flatten_10/Reshape"
|
1809 |
+
input: "flatten_11/Reshape"
|
1810 |
+
input: "mbox_conf/axis"
|
1811 |
+
}
|
1812 |
+
node {
|
1813 |
+
name: "mbox_conf_reshape"
|
1814 |
+
op: "Reshape"
|
1815 |
+
input: "mbox_conf"
|
1816 |
+
input: "reshape_before_softmax"
|
1817 |
+
}
|
1818 |
+
node {
|
1819 |
+
name: "mbox_conf_softmax"
|
1820 |
+
op: "Softmax"
|
1821 |
+
input: "mbox_conf_reshape"
|
1822 |
+
attr {
|
1823 |
+
key: "axis"
|
1824 |
+
value {
|
1825 |
+
i: 2
|
1826 |
+
}
|
1827 |
+
}
|
1828 |
+
}
|
1829 |
+
node {
|
1830 |
+
name: "mbox_conf_flatten"
|
1831 |
+
op: "Flatten"
|
1832 |
+
input: "mbox_conf_softmax"
|
1833 |
+
}
|
1834 |
+
node {
|
1835 |
+
name: "PriorBox_0"
|
1836 |
+
op: "PriorBox"
|
1837 |
+
input: "conv4_3_norm/mul_1"
|
1838 |
+
input: "data"
|
1839 |
+
attr {
|
1840 |
+
key: "aspect_ratio"
|
1841 |
+
value {
|
1842 |
+
tensor {
|
1843 |
+
dtype: DT_FLOAT
|
1844 |
+
tensor_shape {
|
1845 |
+
dim {
|
1846 |
+
size: 1
|
1847 |
+
}
|
1848 |
+
}
|
1849 |
+
float_val: 2.0
|
1850 |
+
}
|
1851 |
+
}
|
1852 |
+
}
|
1853 |
+
attr {
|
1854 |
+
key: "clip"
|
1855 |
+
value {
|
1856 |
+
b: false
|
1857 |
+
}
|
1858 |
+
}
|
1859 |
+
attr {
|
1860 |
+
key: "flip"
|
1861 |
+
value {
|
1862 |
+
b: true
|
1863 |
+
}
|
1864 |
+
}
|
1865 |
+
attr {
|
1866 |
+
key: "max_size"
|
1867 |
+
value {
|
1868 |
+
i: 60
|
1869 |
+
}
|
1870 |
+
}
|
1871 |
+
attr {
|
1872 |
+
key: "min_size"
|
1873 |
+
value {
|
1874 |
+
i: 30
|
1875 |
+
}
|
1876 |
+
}
|
1877 |
+
attr {
|
1878 |
+
key: "offset"
|
1879 |
+
value {
|
1880 |
+
f: 0.5
|
1881 |
+
}
|
1882 |
+
}
|
1883 |
+
attr {
|
1884 |
+
key: "step"
|
1885 |
+
value {
|
1886 |
+
f: 8.0
|
1887 |
+
}
|
1888 |
+
}
|
1889 |
+
attr {
|
1890 |
+
key: "variance"
|
1891 |
+
value {
|
1892 |
+
tensor {
|
1893 |
+
dtype: DT_FLOAT
|
1894 |
+
tensor_shape {
|
1895 |
+
dim {
|
1896 |
+
size: 4
|
1897 |
+
}
|
1898 |
+
}
|
1899 |
+
float_val: 0.10000000149
|
1900 |
+
float_val: 0.10000000149
|
1901 |
+
float_val: 0.20000000298
|
1902 |
+
float_val: 0.20000000298
|
1903 |
+
}
|
1904 |
+
}
|
1905 |
+
}
|
1906 |
+
}
|
1907 |
+
node {
|
1908 |
+
name: "PriorBox_1"
|
1909 |
+
op: "PriorBox"
|
1910 |
+
input: "last_relu"
|
1911 |
+
input: "data"
|
1912 |
+
attr {
|
1913 |
+
key: "aspect_ratio"
|
1914 |
+
value {
|
1915 |
+
tensor {
|
1916 |
+
dtype: DT_FLOAT
|
1917 |
+
tensor_shape {
|
1918 |
+
dim {
|
1919 |
+
size: 2
|
1920 |
+
}
|
1921 |
+
}
|
1922 |
+
float_val: 2.0
|
1923 |
+
float_val: 3.0
|
1924 |
+
}
|
1925 |
+
}
|
1926 |
+
}
|
1927 |
+
attr {
|
1928 |
+
key: "clip"
|
1929 |
+
value {
|
1930 |
+
b: false
|
1931 |
+
}
|
1932 |
+
}
|
1933 |
+
attr {
|
1934 |
+
key: "flip"
|
1935 |
+
value {
|
1936 |
+
b: true
|
1937 |
+
}
|
1938 |
+
}
|
1939 |
+
attr {
|
1940 |
+
key: "max_size"
|
1941 |
+
value {
|
1942 |
+
i: 111
|
1943 |
+
}
|
1944 |
+
}
|
1945 |
+
attr {
|
1946 |
+
key: "min_size"
|
1947 |
+
value {
|
1948 |
+
i: 60
|
1949 |
+
}
|
1950 |
+
}
|
1951 |
+
attr {
|
1952 |
+
key: "offset"
|
1953 |
+
value {
|
1954 |
+
f: 0.5
|
1955 |
+
}
|
1956 |
+
}
|
1957 |
+
attr {
|
1958 |
+
key: "step"
|
1959 |
+
value {
|
1960 |
+
f: 16.0
|
1961 |
+
}
|
1962 |
+
}
|
1963 |
+
attr {
|
1964 |
+
key: "variance"
|
1965 |
+
value {
|
1966 |
+
tensor {
|
1967 |
+
dtype: DT_FLOAT
|
1968 |
+
tensor_shape {
|
1969 |
+
dim {
|
1970 |
+
size: 4
|
1971 |
+
}
|
1972 |
+
}
|
1973 |
+
float_val: 0.10000000149
|
1974 |
+
float_val: 0.10000000149
|
1975 |
+
float_val: 0.20000000298
|
1976 |
+
float_val: 0.20000000298
|
1977 |
+
}
|
1978 |
+
}
|
1979 |
+
}
|
1980 |
+
}
|
1981 |
+
node {
|
1982 |
+
name: "PriorBox_2"
|
1983 |
+
op: "PriorBox"
|
1984 |
+
input: "conv6_2_h/Relu"
|
1985 |
+
input: "data"
|
1986 |
+
attr {
|
1987 |
+
key: "aspect_ratio"
|
1988 |
+
value {
|
1989 |
+
tensor {
|
1990 |
+
dtype: DT_FLOAT
|
1991 |
+
tensor_shape {
|
1992 |
+
dim {
|
1993 |
+
size: 2
|
1994 |
+
}
|
1995 |
+
}
|
1996 |
+
float_val: 2.0
|
1997 |
+
float_val: 3.0
|
1998 |
+
}
|
1999 |
+
}
|
2000 |
+
}
|
2001 |
+
attr {
|
2002 |
+
key: "clip"
|
2003 |
+
value {
|
2004 |
+
b: false
|
2005 |
+
}
|
2006 |
+
}
|
2007 |
+
attr {
|
2008 |
+
key: "flip"
|
2009 |
+
value {
|
2010 |
+
b: true
|
2011 |
+
}
|
2012 |
+
}
|
2013 |
+
attr {
|
2014 |
+
key: "max_size"
|
2015 |
+
value {
|
2016 |
+
i: 162
|
2017 |
+
}
|
2018 |
+
}
|
2019 |
+
attr {
|
2020 |
+
key: "min_size"
|
2021 |
+
value {
|
2022 |
+
i: 111
|
2023 |
+
}
|
2024 |
+
}
|
2025 |
+
attr {
|
2026 |
+
key: "offset"
|
2027 |
+
value {
|
2028 |
+
f: 0.5
|
2029 |
+
}
|
2030 |
+
}
|
2031 |
+
attr {
|
2032 |
+
key: "step"
|
2033 |
+
value {
|
2034 |
+
f: 32.0
|
2035 |
+
}
|
2036 |
+
}
|
2037 |
+
attr {
|
2038 |
+
key: "variance"
|
2039 |
+
value {
|
2040 |
+
tensor {
|
2041 |
+
dtype: DT_FLOAT
|
2042 |
+
tensor_shape {
|
2043 |
+
dim {
|
2044 |
+
size: 4
|
2045 |
+
}
|
2046 |
+
}
|
2047 |
+
float_val: 0.10000000149
|
2048 |
+
float_val: 0.10000000149
|
2049 |
+
float_val: 0.20000000298
|
2050 |
+
float_val: 0.20000000298
|
2051 |
+
}
|
2052 |
+
}
|
2053 |
+
}
|
2054 |
+
}
|
2055 |
+
node {
|
2056 |
+
name: "PriorBox_3"
|
2057 |
+
op: "PriorBox"
|
2058 |
+
input: "conv7_2_h/Relu"
|
2059 |
+
input: "data"
|
2060 |
+
attr {
|
2061 |
+
key: "aspect_ratio"
|
2062 |
+
value {
|
2063 |
+
tensor {
|
2064 |
+
dtype: DT_FLOAT
|
2065 |
+
tensor_shape {
|
2066 |
+
dim {
|
2067 |
+
size: 2
|
2068 |
+
}
|
2069 |
+
}
|
2070 |
+
float_val: 2.0
|
2071 |
+
float_val: 3.0
|
2072 |
+
}
|
2073 |
+
}
|
2074 |
+
}
|
2075 |
+
attr {
|
2076 |
+
key: "clip"
|
2077 |
+
value {
|
2078 |
+
b: false
|
2079 |
+
}
|
2080 |
+
}
|
2081 |
+
attr {
|
2082 |
+
key: "flip"
|
2083 |
+
value {
|
2084 |
+
b: true
|
2085 |
+
}
|
2086 |
+
}
|
2087 |
+
attr {
|
2088 |
+
key: "max_size"
|
2089 |
+
value {
|
2090 |
+
i: 213
|
2091 |
+
}
|
2092 |
+
}
|
2093 |
+
attr {
|
2094 |
+
key: "min_size"
|
2095 |
+
value {
|
2096 |
+
i: 162
|
2097 |
+
}
|
2098 |
+
}
|
2099 |
+
attr {
|
2100 |
+
key: "offset"
|
2101 |
+
value {
|
2102 |
+
f: 0.5
|
2103 |
+
}
|
2104 |
+
}
|
2105 |
+
attr {
|
2106 |
+
key: "step"
|
2107 |
+
value {
|
2108 |
+
f: 64.0
|
2109 |
+
}
|
2110 |
+
}
|
2111 |
+
attr {
|
2112 |
+
key: "variance"
|
2113 |
+
value {
|
2114 |
+
tensor {
|
2115 |
+
dtype: DT_FLOAT
|
2116 |
+
tensor_shape {
|
2117 |
+
dim {
|
2118 |
+
size: 4
|
2119 |
+
}
|
2120 |
+
}
|
2121 |
+
float_val: 0.10000000149
|
2122 |
+
float_val: 0.10000000149
|
2123 |
+
float_val: 0.20000000298
|
2124 |
+
float_val: 0.20000000298
|
2125 |
+
}
|
2126 |
+
}
|
2127 |
+
}
|
2128 |
+
}
|
2129 |
+
node {
|
2130 |
+
name: "PriorBox_4"
|
2131 |
+
op: "PriorBox"
|
2132 |
+
input: "conv8_2_h/Relu"
|
2133 |
+
input: "data"
|
2134 |
+
attr {
|
2135 |
+
key: "aspect_ratio"
|
2136 |
+
value {
|
2137 |
+
tensor {
|
2138 |
+
dtype: DT_FLOAT
|
2139 |
+
tensor_shape {
|
2140 |
+
dim {
|
2141 |
+
size: 1
|
2142 |
+
}
|
2143 |
+
}
|
2144 |
+
float_val: 2.0
|
2145 |
+
}
|
2146 |
+
}
|
2147 |
+
}
|
2148 |
+
attr {
|
2149 |
+
key: "clip"
|
2150 |
+
value {
|
2151 |
+
b: false
|
2152 |
+
}
|
2153 |
+
}
|
2154 |
+
attr {
|
2155 |
+
key: "flip"
|
2156 |
+
value {
|
2157 |
+
b: true
|
2158 |
+
}
|
2159 |
+
}
|
2160 |
+
attr {
|
2161 |
+
key: "max_size"
|
2162 |
+
value {
|
2163 |
+
i: 264
|
2164 |
+
}
|
2165 |
+
}
|
2166 |
+
attr {
|
2167 |
+
key: "min_size"
|
2168 |
+
value {
|
2169 |
+
i: 213
|
2170 |
+
}
|
2171 |
+
}
|
2172 |
+
attr {
|
2173 |
+
key: "offset"
|
2174 |
+
value {
|
2175 |
+
f: 0.5
|
2176 |
+
}
|
2177 |
+
}
|
2178 |
+
attr {
|
2179 |
+
key: "step"
|
2180 |
+
value {
|
2181 |
+
f: 100.0
|
2182 |
+
}
|
2183 |
+
}
|
2184 |
+
attr {
|
2185 |
+
key: "variance"
|
2186 |
+
value {
|
2187 |
+
tensor {
|
2188 |
+
dtype: DT_FLOAT
|
2189 |
+
tensor_shape {
|
2190 |
+
dim {
|
2191 |
+
size: 4
|
2192 |
+
}
|
2193 |
+
}
|
2194 |
+
float_val: 0.10000000149
|
2195 |
+
float_val: 0.10000000149
|
2196 |
+
float_val: 0.20000000298
|
2197 |
+
float_val: 0.20000000298
|
2198 |
+
}
|
2199 |
+
}
|
2200 |
+
}
|
2201 |
+
}
|
2202 |
+
node {
|
2203 |
+
name: "PriorBox_5"
|
2204 |
+
op: "PriorBox"
|
2205 |
+
input: "conv9_2_h/Relu"
|
2206 |
+
input: "data"
|
2207 |
+
attr {
|
2208 |
+
key: "aspect_ratio"
|
2209 |
+
value {
|
2210 |
+
tensor {
|
2211 |
+
dtype: DT_FLOAT
|
2212 |
+
tensor_shape {
|
2213 |
+
dim {
|
2214 |
+
size: 1
|
2215 |
+
}
|
2216 |
+
}
|
2217 |
+
float_val: 2.0
|
2218 |
+
}
|
2219 |
+
}
|
2220 |
+
}
|
2221 |
+
attr {
|
2222 |
+
key: "clip"
|
2223 |
+
value {
|
2224 |
+
b: false
|
2225 |
+
}
|
2226 |
+
}
|
2227 |
+
attr {
|
2228 |
+
key: "flip"
|
2229 |
+
value {
|
2230 |
+
b: true
|
2231 |
+
}
|
2232 |
+
}
|
2233 |
+
attr {
|
2234 |
+
key: "max_size"
|
2235 |
+
value {
|
2236 |
+
i: 315
|
2237 |
+
}
|
2238 |
+
}
|
2239 |
+
attr {
|
2240 |
+
key: "min_size"
|
2241 |
+
value {
|
2242 |
+
i: 264
|
2243 |
+
}
|
2244 |
+
}
|
2245 |
+
attr {
|
2246 |
+
key: "offset"
|
2247 |
+
value {
|
2248 |
+
f: 0.5
|
2249 |
+
}
|
2250 |
+
}
|
2251 |
+
attr {
|
2252 |
+
key: "step"
|
2253 |
+
value {
|
2254 |
+
f: 300.0
|
2255 |
+
}
|
2256 |
+
}
|
2257 |
+
attr {
|
2258 |
+
key: "variance"
|
2259 |
+
value {
|
2260 |
+
tensor {
|
2261 |
+
dtype: DT_FLOAT
|
2262 |
+
tensor_shape {
|
2263 |
+
dim {
|
2264 |
+
size: 4
|
2265 |
+
}
|
2266 |
+
}
|
2267 |
+
float_val: 0.10000000149
|
2268 |
+
float_val: 0.10000000149
|
2269 |
+
float_val: 0.20000000298
|
2270 |
+
float_val: 0.20000000298
|
2271 |
+
}
|
2272 |
+
}
|
2273 |
+
}
|
2274 |
+
}
|
2275 |
+
node {
|
2276 |
+
name: "mbox_priorbox"
|
2277 |
+
op: "ConcatV2"
|
2278 |
+
input: "PriorBox_0"
|
2279 |
+
input: "PriorBox_1"
|
2280 |
+
input: "PriorBox_2"
|
2281 |
+
input: "PriorBox_3"
|
2282 |
+
input: "PriorBox_4"
|
2283 |
+
input: "PriorBox_5"
|
2284 |
+
input: "mbox_loc/axis"
|
2285 |
+
}
|
2286 |
+
node {
|
2287 |
+
name: "detection_out"
|
2288 |
+
op: "DetectionOutput"
|
2289 |
+
input: "mbox_loc"
|
2290 |
+
input: "mbox_conf_flatten"
|
2291 |
+
input: "mbox_priorbox"
|
2292 |
+
attr {
|
2293 |
+
key: "background_label_id"
|
2294 |
+
value {
|
2295 |
+
i: 0
|
2296 |
+
}
|
2297 |
+
}
|
2298 |
+
attr {
|
2299 |
+
key: "code_type"
|
2300 |
+
value {
|
2301 |
+
s: "CENTER_SIZE"
|
2302 |
+
}
|
2303 |
+
}
|
2304 |
+
attr {
|
2305 |
+
key: "confidence_threshold"
|
2306 |
+
value {
|
2307 |
+
f: 0.00999999977648
|
2308 |
+
}
|
2309 |
+
}
|
2310 |
+
attr {
|
2311 |
+
key: "keep_top_k"
|
2312 |
+
value {
|
2313 |
+
i: 200
|
2314 |
+
}
|
2315 |
+
}
|
2316 |
+
attr {
|
2317 |
+
key: "nms_threshold"
|
2318 |
+
value {
|
2319 |
+
f: 0.449999988079
|
2320 |
+
}
|
2321 |
+
}
|
2322 |
+
attr {
|
2323 |
+
key: "num_classes"
|
2324 |
+
value {
|
2325 |
+
i: 2
|
2326 |
+
}
|
2327 |
+
}
|
2328 |
+
attr {
|
2329 |
+
key: "share_location"
|
2330 |
+
value {
|
2331 |
+
b: true
|
2332 |
+
}
|
2333 |
+
}
|
2334 |
+
attr {
|
2335 |
+
key: "top_k"
|
2336 |
+
value {
|
2337 |
+
i: 400
|
2338 |
+
}
|
2339 |
+
}
|
2340 |
+
}
|
2341 |
+
node {
|
2342 |
+
name: "reshape_before_softmax"
|
2343 |
+
op: "Const"
|
2344 |
+
attr {
|
2345 |
+
key: "value"
|
2346 |
+
value {
|
2347 |
+
tensor {
|
2348 |
+
dtype: DT_INT32
|
2349 |
+
tensor_shape {
|
2350 |
+
dim {
|
2351 |
+
size: 3
|
2352 |
+
}
|
2353 |
+
}
|
2354 |
+
int_val: 0
|
2355 |
+
int_val: -1
|
2356 |
+
int_val: 2
|
2357 |
+
}
|
2358 |
+
}
|
2359 |
+
}
|
2360 |
+
}
|
2361 |
+
library {
|
2362 |
+
}
|
emotion_recognition/models/opencv_face_detector_uint8.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c71d752ef2cbf2f457ac82fdd580fcb2522fd04c5efdaed18eb6d9e2843fbed
|
3 |
+
size 2727750
|
main.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, jsonify, request
|
2 |
+
import os
|
3 |
+
# from "./emotion_recognition/ai_model_photo" import ai
|
4 |
+
from emotion_recognition import ai_model_photo
|
5 |
+
# from palm_response import getResponse, init_connect
|
6 |
+
from flask_mysqldb import MySQL
|
7 |
+
import base64
|
8 |
+
import google.generativeai as genai
|
9 |
+
|
10 |
+
app = Flask(__name__)
|
11 |
+
|
12 |
+
app.config['MYSQL_HOST'] = 'localhost'
|
13 |
+
app.config['MYSQL_USER'] = 'root'
|
14 |
+
app.config['MYSQL_PASSWORD'] = ''
|
15 |
+
app.config['MYSQL_DB'] = 'wanees_app'
|
16 |
+
|
17 |
+
mysql = MySQL(app)
|
18 |
+
|
19 |
+
|
20 |
+
def add_padding(base64_str):
|
21 |
+
missing_padding = len(base64_str) % 4
|
22 |
+
if missing_padding != 0:
|
23 |
+
base64_str += '=' * (4 - missing_padding)
|
24 |
+
return base64_str
|
25 |
+
|
26 |
+
|
27 |
+
@app.route('/api/chat/gemini', methods=['POST'])
|
28 |
+
def receive_chat():
|
29 |
+
try:
|
30 |
+
data = request.get_json()
|
31 |
+
prompt = data['message']
|
32 |
+
print(data)
|
33 |
+
print('promp is : ',prompt)
|
34 |
+
genai.configure(api_key="AIzaSyB7bKpGzkT_f32d-Xv4tb9zIBtb8vJUCCs")
|
35 |
+
model = genai.GenerativeModel('gemini-pro')
|
36 |
+
response = model.generate_content(prompt)
|
37 |
+
print(response.text)
|
38 |
+
|
39 |
+
generated_text = response.text
|
40 |
+
print('generated_text: ',generated_text)
|
41 |
+
return jsonify({"response": generated_text}), 200
|
42 |
+
except Exception as e:
|
43 |
+
print('the catch is:',str(e))
|
44 |
+
return jsonify({"error": str(e)})
|
45 |
+
|
46 |
+
# openai.api_key = "sk-proj-QtkCbMdxHjgMAyughGjgT3BlbkFJuoyNuhK2zO3uKm1Zc5S6"
|
47 |
+
|
48 |
+
# @backoff.on_exception(backoff.expo, RateLimitError, max_tries=8)
|
49 |
+
# def completions_with_backoff(client, messages):
|
50 |
+
# response = client.chat.completions.create(
|
51 |
+
# model="gpt-3.5-turbo",
|
52 |
+
# messages=messages,
|
53 |
+
# temperature=0,
|
54 |
+
# )
|
55 |
+
# return response
|
56 |
+
|
57 |
+
|
58 |
+
# @app.route('/api/chat/gpt', methods=['POST'])
|
59 |
+
# def receive_message():
|
60 |
+
# try:
|
61 |
+
# data = request.get_json()
|
62 |
+
# prompt = data.get('prompt', 'Hello')
|
63 |
+
# print(data)
|
64 |
+
# print('promp is : ',prompt)
|
65 |
+
# # client = OpenAI()
|
66 |
+
# messages = [{"role": "user", "content": prompt}]
|
67 |
+
# client = OpenAI(
|
68 |
+
# # This is the default and can be omitted
|
69 |
+
# api_key="sk-proj-EPQes2YgSJEx1e6EwDarT3BlbkFJrEtY36IDssJKi6VkVP7v"
|
70 |
+
# )
|
71 |
+
# #
|
72 |
+
# response = client.chat.completions.create(
|
73 |
+
# model="gpt-3.5-turbo",
|
74 |
+
# messages=messages,
|
75 |
+
# temperature=0,
|
76 |
+
# )
|
77 |
+
|
78 |
+
# # response = openai.Completion.create(
|
79 |
+
# # engine="text-davinci-003",
|
80 |
+
# # prompt=prompt,
|
81 |
+
# # max_tokens=251,
|
82 |
+
# # temperature=0,
|
83 |
+
# # top_p=1
|
84 |
+
# # )
|
85 |
+
# print('response is: ',response.choices[0].message["content"])
|
86 |
+
|
87 |
+
# generated_text = response.choices[0].message["content"]
|
88 |
+
# print('generated_text: ',generated_text)
|
89 |
+
# return jsonify({"response": generated_text}), 200
|
90 |
+
# except Exception as e:
|
91 |
+
# print('the catch is:',str(e))
|
92 |
+
# return jsonify({"error": str(e)})
|
93 |
+
|
94 |
+
|
95 |
+
@app.route('/api/photo', methods=['POST'])
|
96 |
+
def receive_photo():
|
97 |
+
global photo_path
|
98 |
+
photo_data = request.files['photo']
|
99 |
+
photo_path = os.path.join('.', photo_data.filename)
|
100 |
+
photo_data.save(photo_path)
|
101 |
+
res = ai_model_photo.ai(photo_path)
|
102 |
+
print(photo_path)
|
103 |
+
return jsonify({'message': res}), 200
|
104 |
+
# return Response(status=200, mimetype='application/json')
|
105 |
+
|
106 |
+
|
107 |
+
@app.route('/api/facedetect', methods=['POST'])
|
108 |
+
def AddPhoto():
|
109 |
+
name = request.json['name']
|
110 |
+
email = request.json['email']
|
111 |
+
# mobile = request.json['mobile']
|
112 |
+
img64 = request.json['image']
|
113 |
+
img64_padded = add_padding(img64)
|
114 |
+
imageBinary = base64.b64decode(img64_padded)
|
115 |
+
|
116 |
+
imgdetect = request.json['imagedetect']
|
117 |
+
imgdetect_padded = add_padding(imgdetect)
|
118 |
+
imageBinarydetect = base64.b64decode(imgdetect_padded)
|
119 |
+
photo_path = os.path.join('.', imageBinarydetect.filename)
|
120 |
+
imageBinary.save(photo_path)
|
121 |
+
res = ai_model_photo.ai(photo_path)
|
122 |
+
print(photo_path)
|
123 |
+
|
124 |
+
# def receive_photo():
|
125 |
+
# global photo_path
|
126 |
+
# photo_data = request.files['photo']
|
127 |
+
# photo_path = os.path.join('.', photo_data.filename)
|
128 |
+
# photo_data.save(photo_path)
|
129 |
+
# res = ai_model_photo.ai(photo_path)
|
130 |
+
# print(photo_path)
|
131 |
+
return jsonify({'message': res}), 200
|
132 |
+
|
133 |
+
|
134 |
+
# @app.route('/api/chat/palm', methods=['POST'])
|
135 |
+
# def receive_message():
|
136 |
+
# message ={
|
137 |
+
# "message" : request.json['message']
|
138 |
+
# }
|
139 |
+
# response_palm = getResponse(message["message"])
|
140 |
+
# print("res palm =====", response_palm)
|
141 |
+
# return jsonify({'message': response_palm}), 200
|
142 |
+
|
143 |
+
|
144 |
+
@app.route('/add', methods=['POST'])
|
145 |
+
def Add():
|
146 |
+
name = request.json['name']
|
147 |
+
email = request.json['email']
|
148 |
+
mobile = request.json['mobile']
|
149 |
+
mobile_emergency = request.json['mobile_emergency']
|
150 |
+
age = request.json['age']
|
151 |
+
gender = request.json['gender']
|
152 |
+
location = request.json['location']
|
153 |
+
img64 = request.json['image']
|
154 |
+
user_disease = request.json['user_disease']
|
155 |
+
user_medicine = request.json['user_medicine']
|
156 |
+
|
157 |
+
img64_padded = add_padding(img64)
|
158 |
+
imageBinary = base64.b64decode(img64_padded)
|
159 |
+
|
160 |
+
cur = mysql.connection.cursor()
|
161 |
+
cur.execute("""
|
162 |
+
INSERT INTO users
|
163 |
+
(name, email ,mobile, mobile_emergency, age, gender, location, image)
|
164 |
+
VALUES (%s,%s,%s,%s,%s,%s,%s,%s)
|
165 |
+
""", (name, email, mobile, mobile_emergency, age, gender, location, imageBinary))
|
166 |
+
mysql.connection.commit()
|
167 |
+
cur.execute("""
|
168 |
+
SELECT * FROM users
|
169 |
+
WHERE name=%s AND email=%s
|
170 |
+
""", (name, email))
|
171 |
+
data = cur.fetchall()
|
172 |
+
id = data[0][0]
|
173 |
+
for disease in user_disease:
|
174 |
+
print(disease)
|
175 |
+
cur.execute("""INSERT INTO user_disease
|
176 |
+
(user_id, disease_name)
|
177 |
+
VALUES (%s, %s)
|
178 |
+
""", (id, disease))
|
179 |
+
for medicine in user_medicine:
|
180 |
+
img64 = medicine['medicine_image']
|
181 |
+
img64_padded = add_padding(img64)
|
182 |
+
imageBinary = base64.b64decode(img64_padded)
|
183 |
+
cur.execute("""INSERT INTO user_medicine
|
184 |
+
(user_id, medicine_name,medicine_dose ,medicine_image)
|
185 |
+
VALUES (%s, %s, %s, %s)
|
186 |
+
""", (id, medicine['medicine_name'], medicine['medicine_dose'], medicine['medicine_image']))
|
187 |
+
mysql.connection.commit()
|
188 |
+
cur.close()
|
189 |
+
return jsonify({"message": "done"}), 200
|
190 |
+
|
191 |
+
|
192 |
+
@app.route('/delete/<string:email>', methods=['DELETE'])
|
193 |
+
def Delete(email):
|
194 |
+
cur = mysql.connection.cursor()
|
195 |
+
cur.execute("""
|
196 |
+
SELECT id FROM users
|
197 |
+
WHERE email=%s
|
198 |
+
""", (email, ))
|
199 |
+
data = cur.fetchall()
|
200 |
+
id = data[0][0]
|
201 |
+
cur.execute("DELETE FROM user_disease WHERE user_id=%s", (id,))
|
202 |
+
cur.execute("DELETE FROM user_medicine WHERE user_id=%s", (id,))
|
203 |
+
cur.execute("DELETE FROM users WHERE id=%s", (id,))
|
204 |
+
mysql.connection.commit()
|
205 |
+
return jsonify({"message": "done"}), 200
|
206 |
+
|
207 |
+
|
208 |
+
@app.route('/update/<int:id>', methods=['PUT'])
|
209 |
+
def Update(id):
|
210 |
+
name = request.json['name']
|
211 |
+
email = request.json['email']
|
212 |
+
mobile = request.json['mobile']
|
213 |
+
mobile_emergency = request.json['mobile_emergency']
|
214 |
+
age = request.json['age']
|
215 |
+
gender = request.json['gender']
|
216 |
+
location = request.json['location']
|
217 |
+
img64 = request.json['image']
|
218 |
+
user_disease = request.json['user_disease']
|
219 |
+
user_medicine = request.json['user_medicine']
|
220 |
+
|
221 |
+
img64_padded = add_padding(img64)
|
222 |
+
imageBinary = base64.b64decode(img64_padded)
|
223 |
+
|
224 |
+
cur = mysql.connection.cursor()
|
225 |
+
cur.execute("""
|
226 |
+
UPDATE users
|
227 |
+
SET name=%s,email=%s, mobile=%s ,mobile_emergency=%s ,age=%s ,gender=%s ,location=%s ,image=%s
|
228 |
+
WHERE id=%s
|
229 |
+
""", (name, email, mobile, mobile_emergency, age, gender, location, imageBinary, id))
|
230 |
+
cur.execute("DELETE FROM user_disease WHERE user_id=%s", (id,))
|
231 |
+
cur.execute("DELETE FROM user_medicine WHERE user_id=%s", (id,))
|
232 |
+
|
233 |
+
for disease in user_disease:
|
234 |
+
cur.execute("""INSERT INTO user_disease
|
235 |
+
(user_id, disease_name)
|
236 |
+
VALUES (%s, %s)
|
237 |
+
""", (id, disease['disease_name']))
|
238 |
+
for medicine in user_medicine:
|
239 |
+
cur.execute("""INSERT INTO user_medicine
|
240 |
+
(user_id, medicine_name, medicine_image)
|
241 |
+
VALUES (%s, %s, %s)
|
242 |
+
""", (id, medicine['medicine_name'], medicine['medicine_image']))
|
243 |
+
mysql.connection.commit()
|
244 |
+
return jsonify({"message": "done"}), 200
|
245 |
+
|
246 |
+
|
247 |
+
@app.route('/select/<int:id>', methods=['GET'])
|
248 |
+
def Select(id):
|
249 |
+
cur = mysql.connection.cursor()
|
250 |
+
cur.execute("SELECT * FROM users WHERE id=%s", (id,))
|
251 |
+
table1 = cur.fetchall()
|
252 |
+
cur.execute("SELECT * FROM user_disease WHERE user_id=%s", (id,))
|
253 |
+
table2 = cur.fetchall()
|
254 |
+
cur.execute("SELECT * FROM user_medicine WHERE user_id=%s", (id,))
|
255 |
+
table3 = cur.fetchall()
|
256 |
+
cur.close()
|
257 |
+
user_data = {
|
258 |
+
"name": table1[0][1],
|
259 |
+
"email": table1[0][2],
|
260 |
+
"mobile": table1[0][3],
|
261 |
+
"mobile_emergency": table1[0][4],
|
262 |
+
"age": table1[0][5],
|
263 |
+
"gender": table1[0][6],
|
264 |
+
"location": table1[0][7],
|
265 |
+
"image": base64.b64encode(table1[0][8]).decode('utf-8'),
|
266 |
+
"user_disease": [{"disease_name": disease[1]} for disease in table2],
|
267 |
+
"user_medicine": [{"medicine_name": medicine[1], "medicine_image": base64.b64encode(medicine[3]).decode('utf-8')} for medicine in table3]
|
268 |
+
}
|
269 |
+
return jsonify(user_data), 200
|
270 |
+
|
271 |
+
|
272 |
+
if __name__ == '__main__':
|
273 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|
274 |
+
# init_connect()
|
275 |
+
# app.run(host='192.168.137.241', port=5000, debug=True) # 192.168.1.114 http://192.168.137.241:5000 192.168.1.122
|
276 |
+
|
requirements.txt
ADDED
File without changes
|