#importing the spacy and bert model from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline import gradio as gr from gradio.mix import Parallel import spacy import pandas as pd #Intializing the spacy model for NER and the finbert model for sentiment analysis nlp = spacy.load('en_core_web_sm') finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone',num_labels=3) tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone') sentiment = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer) #defining a function to give us the sentiment of the article def return_sentiment(text): results = sentiment(text[:512]) return (f"{results[0]['label']} ---> {results[0]['score']}") #defining a function to return the names of the organization present in the article def show_org(text): org = [] doc = nlp(text) if doc.ents: for ent in doc.ents: if ent.label_ == 'ORG': org.append(ent.text) None df = pd.DataFrame() org = list(set(org)) df['Organization'] = org return df sentiment_analysis = gr.Interface( fn=return_sentiment, inputs = gr.inputs.Textbox(label="Input your news article here", optional=False), outputs=gr.outputs.Textbox(label="Sentiment Analysis"), ) named_organization = gr.Interface( fn=show_org, inputs = gr.inputs.Textbox(label="Input your news article here", optional=False), outputs=gr.outputs.Dataframe(label="Named organizations"), ) Parallel( sentiment_analysis, named_organization, title="Sentiment Analysis of stock news", inputs=gr.inputs.Textbox( label="Input your article here", ), theme="darkhuggingface", ).launch(enable_queue=True, debug=True)