File size: 5,477 Bytes
f6c6a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from urlextract import URLExtract
from wordcloud import WordCloud
import pandas as pd
from collections import Counter
import emoji
import re
import numpy as np
import torch

extract = URLExtract()
def fetch_stats(selected_user,df):
    if(selected_user!='Overall'):
        df=df[df['user']==selected_user]
    num_messages = df.shape[0]
    words = []
    for message in df['message']:
        words.extend(message.split())
    num_media_messages = df[df['message']=='<Media omitted>\n'].shape[0]
    links=[]
    for message in df['message']:
        links.extend(extract.find_urls(message))
    return num_messages, len(words), num_media_messages ,len(links)

def most_busy_users(df):
    x = df['user'].value_counts()
    x = x.head(min(10, len(x)))
    new_df = round((df['user'].value_counts()/df.shape[0])*100,2).reset_index().rename(columns={'user':'name','count':'percent'})
    return x,new_df

def create_wordcloud(selected_user,df):

    f = open('stop_hinglish.txt', 'r')
    stop_words = f.read()

    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    def remove_stop_words(message):
        y = []
        for word in message.lower().split():
            if word not in stop_words:
                y.append(word)
        return " ".join(y)

    wc = WordCloud(width=500,height=500,min_font_size=10,background_color='white')
    temp['message'] = temp['message'].apply(remove_stop_words)
    df_wc = wc.generate(temp['message'].str.cat(sep=" "))
    return df_wc

def most_common_words(selected_user,df):

    f = open('stop_hinglish.txt','r')
    stop_words = f.read()

    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    words = []

    for message in temp['message']:
            for word in message.lower().split():
                if (word not in stop_words):
                    for c in word:
                        if c not in emoji.UNICODE_EMOJI_ENGLISH:
                            words.append(word)
                            break

    most_common_df = pd.DataFrame(Counter(words).most_common(20))
    return most_common_df

def emoji_helper(selected_user,df):
    if (selected_user != 'Overall'):
        df = df[df['user'] == selected_user]
    emojis=[]
    for message in df['message']:
        emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI_ENGLISH])
    emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
    return emoji_df

def monthly_timeline(selected_user,df):
    if (selected_user != 'Overall'):
        df = df[df['user'] == selected_user]

    timeline = df.groupby(['year','month_num','month']).count()['message'].reset_index()
    time=[]
    for i in range(timeline.shape[0]):
        time.append(timeline['month'][i]+"-"+str(timeline['year'][i]))
    timeline['time'] =time
    return timeline

def daily_timeline(selected_user,df):

    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    daily_timeline = df.groupby('only_date').count()['message'].reset_index()

    return daily_timeline

def week_activity_map(selected_user,df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    return df['day_name'].value_counts()

def month_activity_map(selected_user,df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    return df['month'].value_counts()

def activity_heatmap(selected_user,df):

    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]

    user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)

    return user_heatmap
def birth_dates(df):
    birthdates = []
    names = []
    for i in range(df.shape[0]):
        msg = df['message'][i].lower()
        if (re.search('happy birthday', msg)):
            if (re.findall('@[A-Za-z0-9]+', df['message'][i])):
                users = re.findall('@[A-Za-z0-9]+', df['message'][i])
                for user in users:
                    if user[1:] not in names:
                        names.append(user[1:])
                        birthdates.append(str(df['month'][i]) + " " + str(df['day'][i]))
    return pd.DataFrame({'contacts':names,'birthdates':birthdates})

def sentiment_analysis(selected_user,df):
    if selected_user != 'Overall':
        df = df[df['user'] == selected_user]
    # sample code
    from transformers import BertTokenizer, BertForSequenceClassification
    tokenizer = BertTokenizer.from_pretrained("ganeshkharad/gk-hinglish-sentiment")
    model = BertForSequenceClassification.from_pretrained("ganeshkharad/gk-hinglish-sentiment")
    if df.shape[0]>600:
        df=df.sample(n=600)

    ans = []
    for i in range(df.shape[0]):
        encoded_input = tokenizer(df['message'].iloc[i], return_tensors='pt')
        output = model(**encoded_input)
        output = np.argmax(output.logits.detach().numpy())
        if (output == 0):
            ans.append('Negative-messages')
        elif (output == 1):
            ans.append('Neutral-messages')
        else:
            ans.append('Positive-messages')

        # output contains 3 lables LABEL_0 = Negative ,LABEL_1 = Nuetral ,LABEL_2 = Positive
    return pd.Series(Counter(ans)),df.shape[0]