Spaces:
Running
Running
import torch | |
import gradio as gr | |
from read import text_recognizer | |
from model import Model | |
from utils import CTCLabelConverter | |
from ultralytics import YOLO | |
from PIL import ImageDraw | |
""" vocab / character number configuration """ | |
file = open("UrduGlyphs.txt","r",encoding="utf-8") | |
content = file.readlines() | |
content = ''.join([str(elem).strip('\n') for elem in content]) | |
content = content+" " | |
""" model configuration """ | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
converter = CTCLabelConverter(content) | |
recognition_model = Model(num_class=len(converter.character), device=device) | |
recognition_model = recognition_model.to(device) | |
recognition_model.load_state_dict(torch.load("best_norm_ED.pth", map_location=device)) | |
recognition_model.eval() | |
detection_model = YOLO("yolov8m_UrduDoc.pt") | |
examples = ["1.jpg","2.jpg","3.jpg"] | |
input = gr.Image(type="pil",image_mode="RGB", label="Input Image") | |
def predict(input): | |
"Line Detection" | |
detection_results = detection_model.predict(source=input, conf=0.2, imgsz=1280, save=False, nms=True, device=device) | |
bounding_boxes = detection_results[0].boxes.xyxy.cpu().numpy().tolist() | |
bounding_boxes.sort(key=lambda x: x[1]) | |
"Draw the bounding boxes" | |
draw = ImageDraw.Draw(input) | |
for box in bounding_boxes: | |
# draw rectangle outline with random color and width=5 | |
from numpy import random | |
draw.rectangle(box, fill=None, outline=tuple(random.randint(0,255,3)), width=5) | |
"Crop the detected lines" | |
cropped_images = [] | |
for box in bounding_boxes: | |
cropped_images.append(input.crop(box)) | |
len(cropped_images) | |
"Recognize the text" | |
texts = [] | |
for img in cropped_images: | |
texts.append(text_recognizer(img, recognition_model, converter, device)) | |
"Join the text" | |
text = "\n".join(texts) | |
"Return the image with bounding boxes and the text" | |
return input,text | |
output_image = gr.Image(type="pil",image_mode="RGB",label="Detected Lines") | |
output_text = gr.Textbox(label="Recognized Text",interactive=True,show_copy_button=True) | |
iface = gr.Interface(predict, | |
inputs=input, | |
outputs=[output_image,output_text], | |
title="End-to-End Urdu OCR", | |
description="Demo Web App For UTRNet\n(https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition)", | |
examples=examples, | |
allow_flagging="never") | |
iface.launch() |