# -*- coding: utf-8 -*- """num_detect.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1GcHZ0KGkpSs8vsjRbjMHBRVZ6M86nqYj """ from keras.models import load_model model=load_model(r"C:\Users\Abhijeet Tripathi\Downloads\num_detect (1).keras") import numpy as np import cv2 from keras.preprocessing import image import matplotlib.pyplot as plt def mnist_compatible(image_path, target_size=(28, 28)): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) plt.imshow(img) plt.show() img_resized = cv2.resize(img, target_size) img_inverted = 255 - img_resized img_normalized = img_inverted.astype('float32') / 255.0 img_array = image.img_to_array(img_normalized) img_reshaped = img_array.reshape((*target_size, 1)) return img_reshaped def predict(dict): print(dict) path = dict['composite'] arr = mnist_compatible(path) arr = np.expand_dims(arr, axis=0) return str(np.argmax(model.predict(arr))) import gradio as gr # Import the Brush class from gradio import Brush iface = gr.Interface( fn=predict, inputs=gr.Paint(label="Input Image Component",type="filepath",brush=Brush(colors=["#32cc70"]),canvas_size=(301,601)), outputs="text" ) iface.launch(share='True')