Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup, Comment | |
import os | |
from llama_cpp import Llama | |
def tag_visible(element): | |
if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: | |
return False | |
if isinstance(element, Comment): | |
return False | |
return True | |
def get_text_from_url(url): | |
response = requests.get(url, timeout=10) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# Use 'string=True' instead of deprecated 'text=True' | |
texts = soup.find_all(string=True) | |
visible_texts = filter(tag_visible, texts) | |
return " ".join(t.strip() for t in visible_texts) | |
# Pre-fetch and truncate homepage text | |
text_list = [] | |
homepage_url = "https://sites.google.com/view/abhilashnandy/home/" | |
extensions = ["", "pmrf-profile-page"] | |
for ext in extensions: | |
try: | |
full_text = get_text_from_url(homepage_url + ext) | |
truncated_text = full_text[:2000] # Adjust truncation length as needed | |
text_list.append(truncated_text) | |
except Exception as e: | |
text_list.append(f"Error fetching {homepage_url+ext}: {str(e)}") | |
CONTEXT = " ".join(text_list) | |
# Set the model path. Make sure the model file is downloaded and placed in the 'models' directory. | |
model_path = "models/mistral-7b-instruct-v0.1.Q4_K_M.gguf" | |
if not os.path.exists(model_path): | |
raise ValueError(f"Model file not found at {model_path}. Please download the model file and place it in the 'models' folder.") | |
llm = Llama(model_path=model_path, n_ctx=4096, n_threads=6, verbose=False) | |
def answer_query(query): | |
prompt = ( | |
"You are an AI chatbot answering queries based on Abhilash Nandy's homepage. " | |
"Provide concise answers (under 30 words).\n\n" | |
f"Context: {CONTEXT}\n\nUser: {query}\nAI:" | |
) | |
response = llm(prompt, max_tokens=50, stop=["\nUser:", "\nAI:"], echo=False) | |
return response["choices"][0]["text"].strip() | |
iface = gr.Interface( | |
fn=answer_query, | |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about Abhilash Nandy's homepage..."), | |
outputs="text", | |
title="Homepage QA Chatbot", | |
description="A chatbot answering queries based on homepage context." | |
) | |
if __name__ == '__main__': | |
iface.launch() |