Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
data1 = pd.read_csv('dataset/archive (2)/ball.csv')
|
5 |
+
data2 = pd.read_csv('dataset/archive (2)/bat.csv')
|
6 |
+
|
7 |
+
datasets = {'Bowling Data': pd.DataFrame(data1), 'Batting Data': pd.DataFrame(data2)}
|
8 |
+
|
9 |
+
|
10 |
+
# Function to filter the DataFrame based on user inputs
|
11 |
+
def filter_data(dataset_name='', name_x='', name_y='', start_date=''):
|
12 |
+
selected_dataset = datasets.get(dataset_name, pd.DataFrame())
|
13 |
+
filtered_df = selected_dataset[
|
14 |
+
selected_dataset['name_x'].str.contains(name_x, case=False) &
|
15 |
+
selected_dataset['name_y'].str.contains(name_y, case=False) &
|
16 |
+
selected_dataset['start_date'].str.contains(start_date, case=False)
|
17 |
+
]
|
18 |
+
return filtered_df
|
19 |
+
|
20 |
+
|
21 |
+
# Define the input components for the Gradio interface
|
22 |
+
dataset_selector = gr.Dropdown(choices=list(datasets.keys()), label='Select Dataset')
|
23 |
+
name_x_filter = gr.Textbox(label='Player Name', placeholder='eg. Virat Kohli')
|
24 |
+
name_y_filter = gr.Textbox(label='Match Detail', placeholder='eg. India v Australia')
|
25 |
+
start_date_filter = gr.Textbox(label='Match Date', placeholder='eg. 2015-10-13')
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
iface = gr.Interface(fn=filter_data, inputs=[dataset_selector, name_x_filter, name_y_filter, start_date_filter], outputs='dataframe')
|
29 |
+
|
30 |
+
# Launch the interface
|
31 |
+
iface.launch()
|