import gradio as gr import pandas as pd data1 = pd.read_csv('ball.csv') data2 = pd.read_csv('bat.csv') datasets = {'Bowling Data': pd.DataFrame(data1), 'Batting Data': pd.DataFrame(data2)} # Function to filter the DataFrame based on user inputs def filter_data(dataset_name='', name_x='', name_y='', start_date=''): selected_dataset = datasets.get(dataset_name, pd.DataFrame()) filtered_df = selected_dataset[ selected_dataset['name_x'].str.contains(name_x, case=False) & selected_dataset['name_y'].str.contains(name_y, case=False) & selected_dataset['start_date'].str.contains(start_date, case=False) ] return filtered_df # Define the input components for the Gradio interface dataset_selector = gr.Dropdown(choices=list(datasets.keys()), label='Select Dataset') name_x_filter = gr.Textbox(label='Player Name', placeholder='eg. Virat Kohli') name_y_filter = gr.Textbox(label='Match Detail', placeholder='eg. India v Australia') start_date_filter = gr.Textbox(label='Match Date', placeholder='eg. 2015-10-13') # Create the Gradio interface iface = gr.Interface(fn=filter_data, inputs=[dataset_selector, name_x_filter, name_y_filter, start_date_filter], outputs='dataframe') # Launch the interface iface.launch()