Upload 2 files
Browse files- app.txt +129 -0
- requirements.txt +4 -0
app.txt
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Load the model
|
6 |
+
model = joblib.load('accident_prediction_model_Final.m5')
|
7 |
+
|
8 |
+
# Load the encoder
|
9 |
+
encoder = joblib.load('encoder.pkl')
|
10 |
+
|
11 |
+
# Define classes for accident prediction
|
12 |
+
classes = ["No", "Yes"]
|
13 |
+
|
14 |
+
# Create the inputs list with dropdown menus and sliders
|
15 |
+
inputs = [
|
16 |
+
gr.Dropdown(
|
17 |
+
choices=['Sunny/Clear', 'Rainy', 'Hail/Sleet', 'Foggy/Misty', 'Others'],
|
18 |
+
label="Weather Conditions"
|
19 |
+
),
|
20 |
+
gr.Dropdown(
|
21 |
+
choices=['Pedestrian', 'Bicycles', 'Two Wheelers', 'Auto Rickshaws', 'Cars, Taxis, Vans & LMV', 'Trucks, Lorries', 'Buses', 'Non-motorized Vehicles', 'Others'],
|
22 |
+
label="Impact Type"
|
23 |
+
),
|
24 |
+
gr.Dropdown(
|
25 |
+
choices=['Speeding', 'Jumping Red Light', 'Distracted Driving', 'Drunk Driving', 'Other'],
|
26 |
+
label="Traffic Violations"
|
27 |
+
),
|
28 |
+
gr.Dropdown(
|
29 |
+
choices=['Straight Road', 'Curved Road', 'Bridge', 'Culvert', 'Pot Holes', 'Steep Grade', 'Ongoing Road Works/Under Construction', 'Others'],
|
30 |
+
label="Road Features"
|
31 |
+
),
|
32 |
+
gr.Dropdown(
|
33 |
+
choices=['T-Junction', 'Y-Junction', 'Four arm Junction', 'Staggered Junction', 'Round about Junction', 'Others'],
|
34 |
+
label="Junction Types"
|
35 |
+
),
|
36 |
+
gr.Dropdown(
|
37 |
+
choices=['Traffic Light Signal', 'Police Controlled', 'Stop Sign', 'Flashing Signal/Blinker', 'Uncontrolled', 'Others'],
|
38 |
+
label="Traffic Controls"
|
39 |
+
),
|
40 |
+
gr.Dropdown(
|
41 |
+
choices=['morning', 'afternoon', 'evening', 'night'],
|
42 |
+
label="Time of Day"
|
43 |
+
),
|
44 |
+
gr.Dropdown(
|
45 |
+
choices=['13-17', '18-25', '26-40', '41-60', '60-80', '80 above'],
|
46 |
+
label="Age Group"
|
47 |
+
),
|
48 |
+
gr.Dropdown(
|
49 |
+
choices=['Killed', 'Grievously Injured', 'Minor Injury'],
|
50 |
+
label="Injury Type"
|
51 |
+
),
|
52 |
+
gr.Dropdown(
|
53 |
+
choices=['Yes', 'No'],
|
54 |
+
label="Safety Features"
|
55 |
+
),
|
56 |
+
gr.Slider(minimum=-90, maximum=90, label="Latitude"),
|
57 |
+
gr.Slider(minimum=-180, maximum=180, label="Longitude"),
|
58 |
+
gr.Slider(minimum=1, maximum=10, step= 1, label="Person Count"),
|
59 |
+
]
|
60 |
+
|
61 |
+
# Define output label
|
62 |
+
output_label = gr.Label(num_top_classes=4)
|
63 |
+
|
64 |
+
# Create a function to make predictions
|
65 |
+
def predict_accident(
|
66 |
+
weather_conditions,
|
67 |
+
impact_type,
|
68 |
+
traffic_violations,
|
69 |
+
road_features,
|
70 |
+
junction_types,
|
71 |
+
traffic_controls,
|
72 |
+
time_day,
|
73 |
+
age_group,
|
74 |
+
injury,
|
75 |
+
safety_features,
|
76 |
+
Latitude,
|
77 |
+
Longitude,
|
78 |
+
person_count
|
79 |
+
):
|
80 |
+
data = {
|
81 |
+
'selectedWeatherCondition': weather_conditions,
|
82 |
+
'selectedImpactType': impact_type,
|
83 |
+
'selectedTrafficViolationType': traffic_violations,
|
84 |
+
'selectedRoadFeaturesType': road_features,
|
85 |
+
'selectedRoadJunctionType': junction_types,
|
86 |
+
'selectedTrafficControl': traffic_controls,
|
87 |
+
'selectedTimeOfDay': time_day,
|
88 |
+
'selectedAge': age_group,
|
89 |
+
'selectedInjuryType': injury,
|
90 |
+
'selectedSafetyFeature': safety_features,
|
91 |
+
'Latitude': Latitude,
|
92 |
+
'Longitude': Longitude,
|
93 |
+
'personCount': person_count
|
94 |
+
}
|
95 |
+
|
96 |
+
num_input = {'Latitude': data['Latitude'], 'Longitude': data['Longitude'], 'person_count': data['personCount']}
|
97 |
+
cat_input = {'weather_conditions': data['selectedWeatherCondition'], 'impact_type': data['selectedImpactType'],
|
98 |
+
'traffic_voilations': data['selectedTrafficViolationType'],
|
99 |
+
'road_features': data['selectedRoadFeaturesType'],
|
100 |
+
'junction_types': data['selectedRoadJunctionType'],
|
101 |
+
'traffic_controls': data['selectedTrafficControl'], 'time_day': data['selectedTimeOfDay'],
|
102 |
+
'age_group': data['selectedAge'], 'safety_features': data['selectedSafetyFeature'],
|
103 |
+
'injury': data['selectedInjuryType']}
|
104 |
+
|
105 |
+
input_df = pd.DataFrame([cat_input])
|
106 |
+
|
107 |
+
encoded_input = encoder['encoder'].transform(input_df)
|
108 |
+
encoded_input_df = pd.DataFrame(encoded_input, columns=encoder['encoded_columns'])
|
109 |
+
|
110 |
+
num_df = pd.DataFrame([num_input])
|
111 |
+
input_with_coords = pd.concat([num_df, encoded_input_df], axis=1)
|
112 |
+
|
113 |
+
# Make a prediction using the trained model
|
114 |
+
prediction = model.predict(input_with_coords)
|
115 |
+
|
116 |
+
label = f"Accident Prediction: {classes[int(prediction[0])]}"
|
117 |
+
return label
|
118 |
+
|
119 |
+
# Create the Gradio interface
|
120 |
+
title = "Accident Prediction"
|
121 |
+
description = "Predict the severity of an accident based on input features."
|
122 |
+
output_label = [gr.Label(num_top_classes=4)]
|
123 |
+
gr.Interface(
|
124 |
+
fn=predict_accident,
|
125 |
+
inputs=inputs,
|
126 |
+
outputs=output_label,
|
127 |
+
title=title,
|
128 |
+
description=description,
|
129 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
joblib
|
4 |
+
scikit-learn
|