File size: 10,384 Bytes
d765024 95e2820 d765024 6210ba7 95e2820 d765024 95e2820 275319c d903211 d9695c5 d903211 275319c 95e2820 d765024 d903211 95e2820 9f394ff 95e2820 d765024 b59c607 d765024 275319c 95e2820 275319c 95e2820 d765024 b59c607 d765024 95e2820 e421fe6 95e2820 d765024 6233aa1 d765024 b59c607 d765024 95e2820 d765024 b59c607 d765024 95e2820 d765024 b59c607 d765024 b59c607 d765024 95e2820 d765024 b59c607 d765024 95e2820 b59c607 d765024 b59c607 d765024 b59c607 d765024 95e2820 d765024 b59c607 d765024 b59c607 d765024 b59c607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import cv2
import numpy as np
import requests
import g4f
import time
import os
from transformers import pipeline
from PIL import Image
import google.generativeai as genai
theme = gr.themes.Base(
primary_hue="cyan",
secondary_hue="blue",
neutral_hue="slate",
)
API_KEY = os.getenv("API_KEY")
genai.configure(api_key = os.environ['GOOGLE_API_KEY'])
txt_model = genai.GenerativeModel('gemini-pro')
BRAIN_TUMOR_API_URL = "https://api-inference.huggingface.co/models/Devarshi/Brain_Tumor_Classification"
BREAST_CANCER_API_URL = "https://api-inference.huggingface.co/models/MUmairAB/Breast_Cancer_Detector"
# ALZHEIMER_API_URL = "https://api-inference.huggingface.co/models/dewifaj/alzheimer_mri_classification"
headers = {"Authorization": "Bearer "+API_KEY+"", 'Content-Type': 'application/json'}
alzheimer_classifier = pipeline("image-classification", model="dewifaj/alzheimer_mri_classification")
# breast_cancer_classifier = pipeline("image-classification", model="MUmairAB/Breast_Cancer_Detector")
# brain_tumor_classifier = pipeline("image-classification", model="Devarshi/Brain_Tumor_Classification")
# Create a function to Detect/Classify Alzheimer
def classify_alzheimer(image):
result = alzheimer_classifier(image)
prediction = {}
for ele in result:
label, score = ele.values()
prediction[label] = score
return prediction
# Create a function to Detect/Classify Breast_Cancer
def classify_breast_cancer(image):
image_data = np.array(image, dtype=np.uint8)
_, buffer = cv2.imencode('.jpg', image_data)
binary_data = buffer.tobytes()
response = requests.post(BREAST_CANCER_API_URL, headers=headers, data=binary_data)
prediction = {}
for ele in response.json():
label, score = ele.values()
prediction[label] = score
return prediction
# Create a function to Detect/Classify Brain_Tumor
def classify_brain_tumor(image):
image_data = np.array(image, dtype=np.uint8)
_, buffer = cv2.imencode('.jpg', image_data)
binary_data = buffer.tobytes()
response = requests.post(BRAIN_TUMOR_API_URL, headers=headers, data=binary_data)
prediction = {}
for ele in response.json():
label, score = ele.values()
prediction[label] = score
return prediction
# Create the Gradio interface
with gr.Blocks(theme=theme) as Alzheimer:
with gr.Row():
with gr.Column():
gr.Markdown("# Alzheimer Detection and Classification")
gr.Markdown("> Classify the alzheimer into Mild Demented, Very Mild Demented, Moderate Demented and Non Demented.")
image = gr.Image(type="pil")
output = gr.Label(label='Alzheimer Classification', container=True, scale=2)
with gr.Row():
gr.ClearButton([image, output])
button = gr.Button(value="Submit", variant="primary")
gr.Examples(inputs=image, fn=classify_alzheimer, examples=[os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/mild_12.jpg"),
os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/moderate_21.jpg"),
os.path.join(os.path.dirname(__file__), "diseases/Alzheimer/verymild_1013.jpg")])
button.click(classify_alzheimer, [image], [output])
def respond(message, history):
# bot_message = g4f.ChatCompletion.create(
# model="gemini",
# provider=g4f.Provider.GeminiProChat,
# messages=[{"role": "user",
# "content": "Your role is Alzheimer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Alzheimer or not. If it is not related to Alzheimer then simply avoid the query by saying this is not my expertise, whereas if related to Alzheimer reply it as usual. Here's the user Query:" + message}],
# )
bot_message = txt_model.generate_content("Your role is Alzheimer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Alzheimer or not. If it is not related to Alzheimer then simply avoid the query by saying this is not my expertise, whereas if related to Alzheimer reply it as usual. Here's the user Query:" + message)
return str(bot_message.text)
with gr.Column():
gr.Markdown("# Health Bot for Alzheimer")
gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
gr.ChatInterface(respond, autofocus=False, examples=["Explain Alzhiemer diasease.", "What are the types of Alzhiemer diasease?", "Alzhiemer Prevention methods."]).queue()
with gr.Blocks(theme=theme) as BreastCancer:
with gr.Row():
with gr.Column():
gr.Markdown("# Breast Cancer Detection and Classification")
gr.Markdown("> Classify the breast cancer.")
image = gr.Image()
output = gr.Label(label='Breast Cancer Classification', container=True, scale=2)
with gr.Row():
button = gr.Button(value="Submit", variant="primary")
gr.ClearButton([image, output])
gr.Examples(inputs=image, fn=classify_breast_cancer,
examples=[os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class0.png"),
os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class0_1.png"),
os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class1.png"),
os.path.join(os.path.dirname(__file__), "diseases/Breast_Cancer/class1_1.png")])
button.click(classify_breast_cancer, [image], [output])
def respond(message, history):
# bot_message = g4f.ChatCompletion.create(
# model="gpt-4-32k-0613",
# provider=g4f.Provider.GeekGpt,
# messages=[{"role": "user",
# "content": "Your role is Breast_Cancer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Breast_Cancer or not. If it is not related to Breast_Cancer then simply avoid the query by saying this is not my expertise, whereas if related to Breast_Cancer reply it as usual. Here's the user Query:" + message}],
# )
bot_message = txt_model.generate_content("Your role is Breast_Cancer Disease Expert. Now I will provide you with the user query. First check if the user query is related to Breast_Cancer or not. If it is not related to Breast_Cancer then simply avoid the query by saying this is not my expertise, whereas if related to Breast_Cancer reply it as usual. Here's the user Query:" + message)
yield str(bot_message.text)
with gr.Column():
gr.Markdown("# Health Bot for Breast Cancer")
gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
gr.ChatInterface(respond, autofocus=False, examples=["Explain Breast Cancer.", "What are the types of Breast Cancer?", "Breast Cancer Prevention methods."]).queue()
with gr.Blocks(theme=theme) as BrainTumor:
with gr.Row():
with gr.Column():
gr.Markdown("# Brain Tumor Detection and Classification")
gr.Markdown("> Classify the Brain Tumor.")
image = gr.Image()
output = gr.Label(label='Brain_Tumor Classification', container=True, scale=2)
with gr.Row():
button = gr.Button(value="Submit", variant="primary")
gr.ClearButton([image, output])
gr.Examples(inputs=image, fn=classify_brain_tumor,
examples=[os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/glioma.jpg"),
os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/meningioma.jpg"),
os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/no_tumor.jpg"),
os.path.join(os.path.dirname(__file__), "diseases/Brain_Tumor/pituitary.jpg")])
button.click(classify_brain_tumor, [image], [output])
def respond(message, history):
# bot_message = g4f.ChatCompletion.create(
# model="gpt-4-32k-0613",
# provider=g4f.Provider.GeekGpt,
# messages=[{"role": "user",
# "content": "Your role is Brain Tumor Disease Expert. Now I will provide you with the user query. First check if the user query is related to Brain Tumor or not. If it is not related to Brain Tumor then simply avoid the query by saying this is not my expertise, whereas if related to Brain Tumor reply it as usual. Here's the user Query:" + message}],
# )
bot_message = txt_model.generate_content("Your role is Brain Tumor Disease Expert. Now I will provide you with the user query. First check if the user query is related to Brain Tumor or not. If it is not related to Brain Tumor then simply avoid the query by saying this is not my expertise, whereas if related to Brain Tumor reply it as usual. Here's the user Query:" + message)
return str(bot_message.text)
with gr.Column():
gr.Markdown("# Health Bot for Brain Tumor")
gr.Markdown("> **Note:** The information may not be accurate. Please consult a Doctor before considering any actions.")
gr.ChatInterface(respond, autofocus=False, examples=["Explain Brain Tumor.", "What are the types of Brain Tumor?", "Brain Tumor Prevention methods."]).queue()
Main = gr.TabbedInterface([Alzheimer, BreastCancer, BrainTumor], ["Alzheimer", "Breast Cancer", "Brain Tumor"],
theme=theme,
css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}")
Main.launch() |