Spaces:
Sleeping
Sleeping
import gradio | |
def infer(prompt): | |
config = OmegaConf.load("configs/audiolcm.yaml") | |
# print("-------quick debug no load ckpt---------") | |
# model = instantiate_from_config(config['model'])# for quick debug | |
model = load_model_from_config(config, | |
"../logs/2024-04-21T14-50-11_text2music-audioset-nonoverlap/epoch=000184.ckpt") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
sampler = LCMSampler(model) | |
os.makedirs("results/test", exist_ok=True) | |
vocoder = VocoderBigVGAN("../vocoder/logs/bigvnat16k93.5w", device) | |
generator = GenSamples(sampler, model, "results/test", vocoder, save_mel=False, save_wav=True, | |
original_inference_steps=config.model.params.num_ddim_timesteps) | |
csv_dicts = [] | |
with torch.no_grad(): | |
with model.ema_scope(): | |
wav_name = f'{prompt.strip().replace(" ", "-")}' | |
generator.gen_test_sample(prompt, wav_name=wav_name) | |
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.") | |
def my_inference_function(prompt_oir): | |
prompt = {'ori_caption':prompt_oir,'struct_caption':prompt_oir} | |
file_path = infer(prompt) | |
return "test.wav" | |
gradio_interface = gradio.Interface( | |
fn = my_inference_function, | |
inputs = "text", | |
outputs = "audio" | |
) | |
gradio_interface.launch() | |