AudioLCM / ldm /data /test.py
liuhuadai's picture
Upload 340 files
6efc863 verified
raw
history blame
8.99 kB
import sys
import numpy as np
import torch
from typing import TypeVar, Optional, Iterator
import logging
import pandas as pd
from ldm.data.joinaudiodataset_anylen import *
import glob
logger = logging.getLogger(f'main.{__name__}')
sys.path.insert(0, '.') # nopep8
class JoinManifestSpecs(torch.utils.data.Dataset):
def __init__(self, split, main_spec_dir_path,other_spec_dir_path, mel_num=80,mode='pad', spec_crop_len=1248,pad_value=-5,drop=0,**kwargs):
super().__init__()
self.split = split
self.max_batch_len = spec_crop_len
self.min_batch_len = 64
self.min_factor = 4
self.mel_num = mel_num
self.drop = drop
self.pad_value = pad_value
assert mode in ['pad','tile']
self.collate_mode = mode
manifest_files = []
for dir_path in main_spec_dir_path.split(','):
manifest_files += glob.glob(f'{dir_path}/*.tsv')
df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
self.df_main = pd.concat(df_list,ignore_index=True)
manifest_files = []
for dir_path in other_spec_dir_path.split(','):
manifest_files += glob.glob(f'{dir_path}/*.tsv')
df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
self.df_other = pd.concat(df_list,ignore_index=True)
self.df_other.reset_index(inplace=True)
if split == 'train':
self.dataset = self.df_main.iloc[100:]
elif split == 'valid' or split == 'val':
self.dataset = self.df_main.iloc[:100]
elif split == 'test':
self.df_main = self.add_name_num(self.df_main)
self.dataset = self.df_main
else:
raise ValueError(f'Unknown split {split}')
self.dataset.reset_index(inplace=True)
print('dataset len:', len(self.dataset),"drop_rate",self.drop)
def add_name_num(self,df):
"""each file may have different caption, we add num to filename to identify each audio-caption pair"""
name_count_dict = {}
change = []
for t in df.itertuples():
name = getattr(t,'name')
if name in name_count_dict:
name_count_dict[name] += 1
else:
name_count_dict[name] = 0
change.append((t[0],name_count_dict[name]))
for t in change:
df.loc[t[0],'name'] = str(df.loc[t[0],'name']) + f'_{t[1]}'
return df
def ordered_indices(self):
index2dur = self.dataset[['duration']].sort_values(by='duration')
index2dur_other = self.df_other[['duration']].sort_values(by='duration')
other_indices = list(index2dur_other.index)
offset = len(self.dataset)
other_indices = [x + offset for x in other_indices]
return list(index2dur.index),other_indices
def collater(self,inputs):
to_dict = {}
for l in inputs:
for k,v in l.items():
if k in to_dict:
to_dict[k].append(v)
else:
to_dict[k] = [v]
if self.collate_mode == 'pad':
to_dict['image'] = collate_1d_or_2d(to_dict['image'],pad_idx=self.pad_value,min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
elif self.collate_mode == 'tile':
to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'],min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
else:
raise NotImplementedError
to_dict['caption'] = {'ori_caption':[c['ori_caption'] for c in to_dict['caption']],
'struct_caption':[c['struct_caption'] for c in to_dict['caption']]}
return to_dict
def __getitem__(self, idx):
if idx < len(self.dataset):
data = self.dataset.iloc[idx]
p = np.random.uniform(0,1)
if p > self.drop:
ori_caption = data['ori_cap']
struct_caption = data['caption']
else:
ori_caption = ""
struct_caption = ""
else:
data = self.df_other.iloc[idx-len(self.dataset)]
p = np.random.uniform(0,1)
if p > self.drop:
ori_caption = data['caption']
struct_caption = f'<{ori_caption}& all>'
else:
ori_caption = ""
struct_caption = ""
item = {}
try:
spec = np.load(data['mel_path']) # mel spec [80, T]
if spec.shape[1] > self.max_batch_len:
spec = spec[:,:self.max_batch_len]
except:
mel_path = data['mel_path']
print(f'corrupted:{mel_path}')
spec = np.ones((self.mel_num,self.min_batch_len)).astype(np.float32)*self.pad_value
item['image'] = spec
item["caption"] = {"ori_caption":ori_caption,"struct_caption":struct_caption}
if self.split == 'test':
item['f_name'] = data['name']
return item
def __len__(self):
return len(self.dataset) + len(self.df_other)
class JoinSpecsTrain(JoinManifestSpecs):
def __init__(self, specs_dataset_cfg):
super().__init__('train', **specs_dataset_cfg)
class JoinSpecsValidation(JoinManifestSpecs):
def __init__(self, specs_dataset_cfg):
super().__init__('valid', **specs_dataset_cfg)
class JoinSpecsTest(JoinManifestSpecs):
def __init__(self, specs_dataset_cfg):
super().__init__('test', **specs_dataset_cfg)
class DDPIndexBatchSampler(Sampler):# 让长度相似的音频的indices合到一个batch中以避免过长的pad
def __init__(self, main_indices,other_indices,batch_size, num_replicas: Optional[int] = None,
rank: Optional[int] = None, shuffle: bool = True,
seed: int = 0, drop_last: bool = False) -> None:
if num_replicas is None:
if not dist.is_initialized():
# raise RuntimeError("Requires distributed package to be available")
print("Not in distributed mode")
num_replicas = 1
else:
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_initialized():
# raise RuntimeError("Requires distributed package to be available")
rank = 0
else:
rank = dist.get_rank()
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval"
" [0, {}]".format(rank, num_replicas - 1))
self.main_indices = main_indices
self.other_indices = other_indices
self.max_index = max(self.other_indices)
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.drop_last = drop_last
self.batch_size = batch_size
self.shuffle = shuffle
self.batches = self.build_batches()
self.seed = seed
def set_epoch(self,epoch):
# print("!!!!!!!!!!!set epoch is called!!!!!!!!!!!!!!")
self.epoch = epoch
if self.shuffle:
np.random.seed(self.seed+self.epoch)
self.batches = self.build_batches()
def build_batches(self):
batches,batch = [],[]
for index in self.main_indices:
batch.append(index)
if len(batch) == self.batch_size:
batches.append(batch)
batch = []
if not self.drop_last and len(batch) > 0:
batches.append(batch)
selected_others = np.random.choice(len(self.other_indices),len(batches),replace=False)
for index in selected_others:
if index + self.batch_size > len(self.other_indices):
index = len(self.other_indices) - self.batch_size
batch = [self.other_indices[index + i] for i in range(self.batch_size)]
batches.append(batch)
self.batches = batches
if self.shuffle:
self.batches = np.random.permutation(self.batches)
if self.rank == 0:
print(f"rank: {self.rank}, batches_num {len(self.batches)}")
if self.drop_last and len(self.batches) % self.num_replicas != 0:
self.batches = self.batches[:len(self.batches)//self.num_replicas*self.num_replicas]
if len(self.batches) >= self.num_replicas:
self.batches = self.batches[self.rank::self.num_replicas]
else: # may happen in sanity checking
self.batches = [self.batches[0]]
if self.rank == 0:
print(f"after split batches_num {len(self.batches)}")
return self.batches
def __iter__(self) -> Iterator[List[int]]:
print(f"len(self.batches):{len(self.batches)}")
for batch in self.batches:
yield batch
def __len__(self) -> int:
return len(self.batches)