import numpy as np import torch import torch.utils.data from librosa.filters import mel as librosa_mel_fn from scipy.io.wavfile import read import torch import torch.nn as nn MAX_WAV_VALUE = 32768.0 def load_wav(full_path): sampling_rate, data = read(full_path) return data, sampling_rate def dynamic_range_compression(x, C=1, clip_val=1e-5): return np.log10(np.clip(x, a_min=clip_val, a_max=None) * C) def dynamic_range_decompression(x, C=1): return np.exp(x) / C def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): return torch.log10(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression_torch(x, C=1): return torch.exp(x) / C def spectral_normalize_torch(magnitudes): output = dynamic_range_compression_torch(magnitudes) return output def spectral_de_normalize_torch(magnitudes): output = dynamic_range_decompression_torch(magnitudes) return output class MelNet(nn.Module): def __init__(self,hparams,device='cpu') -> None: super().__init__() self.n_fft = hparams['fft_size'] self.num_mels = hparams['audio_num_mel_bins'] self.sampling_rate = hparams['audio_sample_rate'] self.hop_size = hparams['hop_size'] self.win_size = hparams['win_size'] self.fmin = hparams['fmin'] self.fmax = hparams['fmax'] self.device = device mel = librosa_mel_fn(self.sampling_rate, self.n_fft, self.num_mels, self.fmin, self.fmax) self.mel_basis = torch.from_numpy(mel).float().to(self.device) self.hann_window = torch.hann_window(self.win_size).to(self.device) def to(self,device,**kwagrs): super().to(device=device,**kwagrs) self.mel_basis = self.mel_basis.to(device) self.hann_window = self.hann_window.to(device) self.device = device def forward(self,y,center=False, complex=False): if isinstance(y,np.ndarray): y = torch.FloatTensor(y) if len(y.shape) == 1: y = y.unsqueeze(0) y = y.clamp(min=-1., max=1.).to(self.device) y = torch.nn.functional.pad(y.unsqueeze(1), [int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)], mode='reflect') y = y.squeeze(1) spec = torch.stft(y, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=center, pad_mode='reflect', normalized=False, onesided=True,return_complex=complex) if not complex: spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(self.mel_basis, spec) spec = spectral_normalize_torch(spec) else: B, C, T, _ = spec.shape spec = spec.transpose(1, 2) # [B, T, n_fft, 2] return spec ## below can be used in one gpu, but not ddp mel_basis = {} hann_window = {} def mel_spectrogram(y, hparams, center=False, complex=False): # y should be a tensor with shape (b,wav_len) # hop_size: 512 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate) # win_size: 2048 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate) # fmin: 55 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) # fmax: 10000 # To be increased/reduced depending on data. # fft_size: 2048 # Extra window size is filled with 0 paddings to match this parameter # n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, n_fft = hparams['fft_size'] num_mels = hparams['audio_num_mel_bins'] sampling_rate = hparams['audio_sample_rate'] hop_size = hparams['hop_size'] win_size = hparams['win_size'] fmin = hparams['fmin'] fmax = hparams['fmax'] if isinstance(y,np.ndarray): y = torch.FloatTensor(y) if len(y.shape) == 1: y = y.unsqueeze(0) y = y.clamp(min=-1., max=1.) global mel_basis, hann_window if fmax not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[str(fmax) + '_' + str(y.device)] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) y = torch.nn.functional.pad(y.unsqueeze(1), [int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)], mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True,return_complex=complex) if not complex: spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(mel_basis[str(fmax) + '_' + str(y.device)], spec) spec = spectral_normalize_torch(spec) else: B, C, T, _ = spec.shape spec = spec.transpose(1, 2) # [B, T, n_fft, 2] return spec