Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
# Retrieve your token from the environment variable | |
hf_token = os.getenv("HF_TOKEN_NEW") | |
# Initialize InferenceClient with the token | |
client = InferenceClient( | |
model="abhillubillu/ai_gameapp", | |
token=hf_token # Use your token stored in HF_TOKEN_NEW | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Stream the response from the model | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, # Ensure your model supports streaming | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Setting up Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |