import gradio as gr from PIL import Image from diffusers import StableDiffusionLDM3DPipeline # Load the model. Do this once to avoid reloading on every request. pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-pano") pipe.to("cuda") def generate_images(prompt, guidance_scale=7.0, num_inference_steps=50): output = pipe( prompt, width=1024, height=512, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ) rgb_image, depth_image = output.rgb, output.depth # Convert to PIL Images for Gradio compatibility rgb_image = Image.fromarray(rgb_image[0]) depth_image = Image.fromarray(depth_image[0]) return rgb_image, depth_image iface = gr.Interface( fn=generate_images, inputs=[ "text", gr.Slider(0, 20, value=7.0, label="Guidance Scale"), gr.Slider(0, 100, value=50, label="Inference Steps") ], outputs=["image", "image"], title="ldm3d-pano Image Generator" ) iface.launch()