NL2SQL4 / app.py
abhishek23HF's picture
Rename app (1).py to app.py
9572730
raw
history blame
1.47 kB
import streamlit as st
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "NL2SQL_BLOOMZ-3B"
HUGGING_FACE_USER_NAME = "abhishek23HF"
peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
# from IPython.display import display, Markdown
def make_inference(db_id, question):
batch = tokenizer(f"""
### INSTRUCTION\n
Below is a User Question for a SQL DATABASE. Your job is to write a SQL Query for the given question from the user for that particular Database.
\n\n
### DATABASE_ID:\n{db_id}\n
### USER QUESTION:\n{question}\n\n
### SQL QUERY:\n
""", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=200)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
# Create two text input boxes
text_input_db_id= st.text_input("DB ID")
text_input_question = st.text_input("User Query")
# make_inference(your_db_id_here, your_db_query_here)
# Display the text input boxes
if st.button('Submit'):
st.write(make_inference(text_input_db_id, text_input_question))