File size: 6,453 Bytes
195bb33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import gradio as gr
from models.tts import TTSModel
from utils.audio_utils import save_audio, get_cached_audio, get_audio_filename
from utils.input_validation import validate_input
from config.language_mapping import (
    LANGUAGE_VOICE_MAPPING, 
    construct_description,
    EMOTION_DESC,
    SPEED_DESC,
    PITCH_DESC,
    BACKGROUND_NOISE_DESC,
    REVERBERATION_DESC,
    QUALITY_DESC,
    get_speakers_for_language
)

def generate_speech(
    text, 
    language,
    speaker,
    emotion="Neutral", 
    speed="Normal", 
    pitch="Medium",
    background_noise="Minimal",
    reverberation="Close",
    quality="High"
):
    try:
        # Validate inputs
        validate_input(text, language)
        
        # Check if audio is already cached
        cached_audio = get_cached_audio(
            text, language, speaker, emotion, speed, 
            pitch, background_noise, reverberation, quality
        )
        
        if cached_audio:
            return cached_audio
        
        # Get the description using the imported constructor
        description = construct_description(
            speaker, 
            language, 
            emotion, 
            speed, 
            pitch,
            background_noise,
            reverberation,
            quality
        )
        
        # Generate audio
        tts_model = TTSModel()
        audio_array = tts_model.generate_audio(text, description)
        
        # Save the generated audio
        filename = get_audio_filename(
            text, language, speaker, emotion, speed,
            pitch, background_noise, reverberation, quality
        )
        filepath = save_audio(audio_array, filename)
        
        return filepath
        
    except Exception as e:
        raise gr.Error(str(e))

# Create Gradio interface
with gr.Blocks(title="Indic Text-to-Speech") as demo:
    gr.Markdown("# Indian Local Text-to-Speech Synthesizer")
    gr.Markdown("Generate natural speech in multiple Indian languages using AI4Bharat's model")
    
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(
                label="Text to speak",
                placeholder="Enter the text you want to convert to speech...",
                lines=3
            )
            
            with gr.Row():
                language_input = gr.Dropdown(
                    choices=sorted(list(LANGUAGE_VOICE_MAPPING.keys())),
                    label="Language",
                    value="English"
                )
                speaker_input = gr.Dropdown(
                    choices=LANGUAGE_VOICE_MAPPING["English"],  # Default choices
                    label="Speaker",
                    value=LANGUAGE_VOICE_MAPPING["English"][0]  # Default value
                )
            
            with gr.Row():
                emotion_input = gr.Dropdown(
                    choices=list(EMOTION_DESC.keys()),
                    label="Expressivity",
                    value="Neutral"
                )
                speed_input = gr.Dropdown(
                    choices=list(SPEED_DESC.keys()),
                    label="Speaking Speed",
                    value="Normal"
                )
            
            with gr.Row():
                pitch_input = gr.Dropdown(
                    choices=list(PITCH_DESC.keys()),
                    label="Pitch",
                    value="Medium"
                )
                background_input = gr.Dropdown(
                    choices=list(BACKGROUND_NOISE_DESC.keys()),
                    label="Background Noise",
                    value="Minimal"
                )
            
            with gr.Row():
                reverb_input = gr.Dropdown(
                    choices=list(REVERBERATION_DESC.keys()),
                    label="Reverberation",
                    value="Close"
                )
                quality_input = gr.Dropdown(
                    choices=list(QUALITY_DESC.keys()),
                    label="Audio Quality",
                    value="High"
                )
            
            generate_btn = gr.Button("Generate Speech", variant="primary")
        
        with gr.Column():
            audio_output = gr.Audio(
                label="Generated Speech",
                type="numpy"
            )
    
    # Update speaker choices when language changes
    def update_speakers(language):
        speakers = get_speakers_for_language(language)
        return gr.Dropdown(choices=speakers, value=speakers[0])
    
    language_input.change(
        fn=update_speakers,
        inputs=[language_input],
        outputs=[speaker_input]
    )
    
    # Connect the components
    generate_btn.click(
        fn=generate_speech,
        inputs=[
            text_input, 
            language_input,
            speaker_input,
            emotion_input, 
            speed_input, 
            pitch_input,
            background_input,
            reverb_input,
            quality_input
        ],
        outputs=audio_output
    )
    
    # Pre-generate and cache example outputs
    example_outputs = []
    examples = [
        ["Hello, how are you?", "English", "Thoma", "Happy", "Normal", "Medium", "Minimal", "Close", "High"],
        ["नमस्ते, आप कैसे हैं?", "Hindi", "Rohit", "Neutral", "Normal", "Medium", "None", "Very Close", "Studio"],
        ["ನಮಸ್ಕಾರ, ಹೇಗಿದ್ದೀರಾ?", "Kannada", "Suresh", "Highly Expressive", "Fast", "High", "Minimal", "Moderate", "High"],
        ["How are you doing today?", "English", "Mary", "Monotone", "Slow", "Low", "Moderate", "Distant", "Good"],
    ]
    
    # Generate and cache example outputs at startup
    for example in examples:
        output = generate_speech(*example)
        example_outputs.append(output)
    
    # Add examples with cached outputs
    gr.Examples(
        examples=examples,
        inputs=[
            text_input, 
            language_input,
            speaker_input,
            emotion_input, 
            speed_input, 
            pitch_input,
            background_input,
            reverb_input,
            quality_input
        ],
        outputs=audio_output,
        fn=generate_speech,
        cache_examples=True,
        preprocess=False,  # Don't preprocess inputs
        postprocess=False  # Don't postprocess outputs
    )

if __name__ == "__main__":
    demo.launch()