Spaces:
Running
Running
Commit
·
38cc304
1
Parent(s):
8c6f469
load the app with model
Browse files
app.py
CHANGED
@@ -1,43 +1,57 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
+
|
4 |
+
#load the model directly
|
5 |
+
# Use a pipeline as a high-level helper
|
6 |
+
pipe = pipeline("text-classification", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
7 |
+
|
8 |
+
|
9 |
+
#run the application
|
10 |
+
demo=gr.Interface.from_pipeline(pipe)
|
11 |
+
demo.launch()
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# import gradio as gr
|
16 |
+
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
17 |
+
# import torch
|
18 |
+
|
19 |
+
# # Load the pre-trained model and tokenizer
|
20 |
+
# tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
21 |
+
# model = AutoModelForSequenceClassification.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
22 |
+
|
23 |
+
# # Define a function for sentiment analysis
|
24 |
+
# def predict_sentiment(text):
|
25 |
+
# # Tokenize the input text and prepare it to be used by the model
|
26 |
+
# inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
27 |
+
|
28 |
+
# # Forward pass through the model
|
29 |
+
# with torch.no_grad():
|
30 |
+
# outputs = model(**inputs)
|
31 |
+
|
32 |
+
# # Get the predicted probabilities and convert them to percentages
|
33 |
+
# probabilities = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
|
34 |
+
# positive_percent = probabilities[2] * 100
|
35 |
+
# negative_percent = probabilities[0] * 100
|
36 |
+
# neutral_percent = probabilities[1] * 100
|
37 |
+
|
38 |
+
# # Construct the result dictionary
|
39 |
+
# result = {
|
40 |
+
# "Positive": round(positive_percent, 2),
|
41 |
+
# "Negative": round(negative_percent, 2),
|
42 |
+
# "Neutral": round(neutral_percent, 2)
|
43 |
+
# }
|
44 |
+
|
45 |
+
# return result
|
46 |
+
|
47 |
+
# # Define inputs and outputs directly without using gr.inputs or gr.outputs
|
48 |
+
# iface = gr.Interface(
|
49 |
+
# fn=predict_sentiment,
|
50 |
+
# inputs=gr.inputs.Textbox(lines=10, label="Enter financial statement"),
|
51 |
+
# outputs=gr.outputs.Label(num_top_classes=3, label="Sentiment Percentages"),
|
52 |
+
# title="Financial Statement Sentiment Analysis",
|
53 |
+
# description="Predict the sentiment percentages of a financial statement."
|
54 |
+
# )
|
55 |
+
|
56 |
+
# if __name__ == "__main__":
|
57 |
+
# iface.launch()
|