File size: 1,762 Bytes
e492be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import json
import gradio as gr
from llama_cpp import Llama

# Get environment variables
model_id = os.getenv('MODEL')
quant = os.getenv('QUANT')
chat_template = os.getenv('CHAT_TEMPLATE')

# Interface variables
model_name = "NexoNimbus-7B" 
title = f"๐Ÿ”ฎ NexoNimbus-7B"
description = f"Chat with <a href=\"https://huggingface.co/{model_id}\">{model_name}</a> in GGUF format ({quant})!"

# Initialize the LLM
llm = Llama(model_path="model.gguf",
            n_ctx=32768,
            n_threads=2,
            chat_format=chat_template)

# Function for streaming chat completions
def chat_stream_completion(message, history, system_prompt):
    messages_prompts = [{"role": "system", "content": system_prompt}]
    for human, assistant in history:
        messages_prompts.append({"role": "user", "content": human})
        messages_prompts.append({"role": "assistant", "content": assistant})
    messages_prompts.append({"role": "user", "content": message})

    response = llm.create_chat_completion(
        messages=messages_prompts,
        stream=True
    )
    message_repl = ""
    for chunk in response:
        if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
            message_repl = message_repl + chunk['choices'][0]["delta"]["content"]
        yield message_repl

# Gradio chat interface
gr.ChatInterface(
    fn=chat_stream_completion,
    title=title,
    description=description,
    additional_inputs=[gr.Textbox("You are helpful assistant.")],
    additional_inputs_accordion="๐Ÿ“ System prompt",
    examples=[
        ["What is a Large Language Model?"],
        ["What's 9+2-1?"],
        ["Write Python code to print the Fibonacci sequence"]
    ]
).queue().launch(server_name="0.0.0.0")