Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler | |
import lora | |
import copy | |
import json | |
import gc | |
import random | |
from urllib.parse import quote | |
import gdown | |
import os | |
import diffusers | |
from diffusers.utils import load_image | |
from diffusers.models import ControlNetModel | |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler | |
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from insightface.app import FaceAnalysis | |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps | |
from controlnet_aux import ZoeDetector | |
from compel import Compel, ReturnedEmbeddingsType | |
from gradio_imageslider import ImageSlider | |
with open("sdxl_loras.json", "r") as file: | |
data = json.load(file) | |
sdxl_loras_raw = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item["trigger_word"], | |
"weights": item["weights"], | |
"is_compatible": item["is_compatible"], | |
"is_pivotal": item.get("is_pivotal", False), | |
"text_embedding_weights": item.get("text_embedding_weights", None), | |
"likes": item.get("likes", 0), | |
"downloads": item.get("downloads", 0), | |
"is_nc": item.get("is_nc", False), | |
"new": item.get("new", False), | |
} | |
for item in data | |
] | |
with open("defaults_data.json", "r") as file: | |
lora_defaults = json.load(file) | |
device = "cuda" | |
state_dicts = {} | |
for item in sdxl_loras_raw: | |
saved_name = hf_hub_download(item["repo"], item["weights"]) | |
if not saved_name.endswith('.safetensors'): | |
state_dict = torch.load(saved_name) | |
else: | |
state_dict = load_file(saved_name) | |
state_dicts[item["repo"]] = { | |
"saved_name": saved_name, | |
"state_dict": state_dict | |
} | |
sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True] | |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True] | |
# download models | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/config.json", | |
local_dir="/data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", | |
filename="ControlNetModel/diffusion_pytorch_model.safetensors", | |
local_dir="/data/checkpoints", | |
) | |
hf_hub_download( | |
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints" | |
) | |
hf_hub_download( | |
repo_id="latent-consistency/lcm-lora-sdxl", | |
filename="pytorch_lora_weights.safetensors", | |
local_dir="/data/checkpoints", | |
) | |
# download antelopev2 | |
if not os.path.exists("/data/antelopev2.zip"): | |
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True) | |
os.system("unzip /data/antelopev2.zip -d /data/models/") | |
app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
# prepare models under ./checkpoints | |
face_adapter = f'/data/checkpoints/ip-adapter.bin' | |
controlnet_path = f'/data/checkpoints/ControlNetModel' | |
# load IdentityNet | |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) | |
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21", | |
vae=vae, | |
controlnet=[identitynet, zoedepthnet], | |
torch_dtype=torch.float16) | |
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True) | |
pipe.load_ip_adapter_instantid(face_adapter) | |
pipe.set_ip_adapter_scale(0.8) | |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators") | |
zoe.to("cuda") | |
original_pipe = copy.deepcopy(pipe) | |
pipe.to(device) | |
last_lora = "" | |
last_merged = False | |
last_fused = False | |
js = ''' | |
var button = document.getElementById('button'); | |
// Add a click event listener to the button | |
button.addEventListener('click', function() { | |
element.classList.add('selected'); | |
}); | |
''' | |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False): | |
lora_repo = sdxl_loras[selected_state.index]["repo"] | |
new_placeholder = "Type a prompt to use your selected LoRA" | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" | |
for lora_list in lora_defaults: | |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: | |
face_strength = lora_list.get("face_strength", face_strength) | |
image_strength = lora_list.get("image_strength", image_strength) | |
weight = lora_list.get("weight", weight) | |
depth_control_scale = lora_list.get("depth_control_scale", depth_control_scale) | |
negative = lora_list.get("negative", negative) | |
if(is_new): | |
if(selected_state.index == 0): | |
selected_state.index = -9999 | |
else: | |
selected_state.index *= -1 | |
return ( | |
updated_text, | |
gr.update(placeholder=new_placeholder), | |
face_strength, | |
image_strength, | |
weight, | |
depth_control_scale, | |
negative, | |
selected_state | |
) | |
def center_crop_image_as_square(img): | |
square_size = min(img.size) | |
left = (img.width - square_size) / 2 | |
top = (img.height - square_size) / 2 | |
right = (img.width + square_size) / 2 | |
bottom = (img.height + square_size) / 2 | |
img_cropped = img.crop((left, top, right, bottom)) | |
return img_cropped | |
def check_selected(selected_state): | |
if not selected_state: | |
raise gr.Error("You must select a LoRA") | |
def merge_incompatible_lora(full_path_lora, lora_scale): | |
for weights_file in [full_path_lora]: | |
if ";" in weights_file: | |
weights_file, multiplier = weights_file.split(";") | |
multiplier = float(multiplier) | |
else: | |
multiplier = lora_scale | |
lora_model, weights_sd = lora.create_network_from_weights( | |
multiplier, | |
full_path_lora, | |
pipe.vae, | |
pipe.text_encoder, | |
pipe.unet, | |
for_inference=True, | |
) | |
lora_model.merge_to( | |
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" | |
) | |
del weights_sd | |
del lora_model | |
gc.collect() | |
def run_lora(images, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)): | |
global last_lora, last_merged, last_fused, pipe | |
face_image = images[0] | |
face_image = center_crop_image_as_square(face_image) | |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
face_emb = face_info['embedding'] | |
face_kps = draw_kps(face_image, face_info['kps']) | |
for lora_list in lora_defaults: | |
if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]: | |
prompt_full = lora_list.get("prompt", None) | |
if(prompt_full): | |
prompt = prompt_full.replace("<subject>", prompt) | |
print("Prompt:", prompt) | |
#prepare face zoe | |
with torch.no_grad(): | |
image_zoe = zoe(face_image) | |
width, height = face_kps.size | |
images = [face_kps, image_zoe.resize((height, width))] | |
#if(selected_state.index < 0): | |
# if(selected_state.index == -9999): | |
# selected_state.index = 0 | |
# else: | |
# selected_state.index *= -1 | |
#sdxl_loras = sdxl_loras_new | |
print("Selected State: ", selected_state.index) | |
print(sdxl_loras[selected_state.index]["repo"]) | |
if negative == "": | |
negative = None | |
if not selected_state: | |
raise gr.Error("You must select a LoRA") | |
repo_name = sdxl_loras[selected_state.index]["repo"] | |
weight_name = sdxl_loras[selected_state.index]["weights"] | |
full_path_lora = state_dicts[repo_name]["saved_name"] | |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"]) | |
cross_attention_kwargs = None | |
print("Last LoRA: ", last_lora) | |
print("Current LoRA: ", repo_name) | |
print("Last fused: ", last_fused) | |
if last_lora != repo_name: | |
if(last_fused): | |
pipe.unfuse_lora() | |
pipe.unload_lora_weights() | |
pipe.load_lora_weights(loaded_state_dict) | |
pipe.fuse_lora() | |
last_fused = True | |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] | |
if(is_pivotal): | |
#Add the textual inversion embeddings from pivotal tuning models | |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"] | |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") | |
state_dict_embedding = load_file(embedding_path) | |
print(state_dict_embedding) | |
try: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
except: | |
pipe.unload_textual_inversion() | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
conditioning, pooled = compel(prompt) | |
if(negative): | |
negative_conditioning, negative_pooled = compel(negative) | |
else: | |
negative_conditioning, negative_pooled = None, None | |
image = pipe( | |
prompt_embeds=conditioning, | |
pooled_prompt_embeds=pooled, | |
negative_prompt_embeds=negative_conditioning, | |
negative_pooled_prompt_embeds=negative_pooled, | |
width=1024, | |
height=1024, | |
image_embeds=face_emb, | |
image=face_image, | |
strength=1-image_strength, | |
control_image=images, | |
num_inference_steps=20, | |
guidance_scale = guidance_scale, | |
controlnet_conditioning_scale=[face_strength, depth_control_scale], | |
).images[0] | |
last_lora = repo_name | |
gc.collect() | |
return (face_image, image), gr.update(visible=True) | |
def shuffle_gallery(sdxl_loras): | |
random.shuffle(sdxl_loras) | |
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras | |
def swap_gallery(order, sdxl_loras): | |
if(order == "random"): | |
return shuffle_gallery(sdxl_loras) | |
else: | |
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) | |
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
def deselect(): | |
return gr.Gallery(selected_index=None) | |
with gr.Blocks(css="custom.css") as demo: | |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) | |
gr_sdxl_loras_new = gr.State(value=sdxl_loras_raw_new) | |
title = gr.HTML( | |
"""<h1>Face to All</h1>""", | |
elem_id="title", | |
) | |
selected_state = gr.State() | |
with gr.Row(elem_id="main_app"): | |
with gr.Column(scale=2): | |
with gr.Group(elem_id="gallery_box"): | |
photo = ImageSlider(label="Upload a picture of yourself", interactive=True, type="pil") | |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", ) | |
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") | |
#new_gallery = gr.Gallery( | |
# label="New LoRAs", | |
# elem_id="gallery_new", | |
# columns=3, | |
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False) | |
gallery = gr.Gallery( | |
#value=[(item["image"], item["title"]) for item in sdxl_loras], | |
label="Style gallery", | |
allow_preview=False, | |
columns=4, | |
elem_id="gallery", | |
show_share_button=False, | |
height=784 | |
) | |
with gr.Column(scale=3): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="A person", elem_id="prompt") | |
button = gr.Button("Run", elem_id="run_button") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
result = gr.Image( | |
interactive=False, label="Generated Image", elem_id="result-image" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
negative = gr.Textbox(label="Negative Prompt") | |
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight") | |
face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models") | |
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo") | |
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale") | |
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght") | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", | |
visible=True, | |
elem_id="selected_lora", | |
) | |
order_gallery.change( | |
fn=swap_gallery, | |
inputs=[order_gallery, gr_sdxl_loras], | |
outputs=[gallery, gr_sdxl_loras], | |
queue=False | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative], | |
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state], | |
queue=False, | |
show_progress=False | |
) | |
#new_gallery.select( | |
# fn=update_selection, | |
# inputs=[gr_sdxl_loras_new, gr.State(True)], | |
# outputs=[prompt_title, prompt, prompt, selected_state, gallery], | |
# queue=False, | |
# show_progress=False | |
#) | |
prompt.submit( | |
fn=check_selected, | |
inputs=[selected_state], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras], | |
outputs=[result, share_group], | |
) | |
button.click( | |
fn=check_selected, | |
inputs=[selected_state], | |
queue=False, | |
show_progress=False | |
).success( | |
fn=run_lora, | |
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras], | |
outputs=[result, share_group], | |
) | |
share_button.click(None, [], [], js=share_js) | |
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js) | |
demo.queue(max_size=20) | |
demo.launch(share=True) |