Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,6 @@
|
|
1 |
-
import gradio
|
2 |
-
import subprocess
|
3 |
-
from PIL import Image
|
4 |
-
import torch, torch.backends.cudnn, torch.backends.cuda
|
5 |
-
from min_dalle import MinDalle
|
6 |
-
from emoji import demojize
|
7 |
-
import string
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
text = text.lower().encode('ascii', errors='ignore').decode()
|
12 |
-
allowed_chars = string.ascii_lowercase + ' '
|
13 |
-
text = ''.join(i for i in text.lower() if i in allowed_chars)
|
14 |
-
text = text[:64]
|
15 |
-
text = '-'.join(text.strip().split())
|
16 |
-
if len(text) == 0: text = 'blank'
|
17 |
-
return text
|
18 |
-
|
19 |
-
def log_gpu_memory():
|
20 |
-
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
|
21 |
-
|
22 |
-
log_gpu_memory()
|
23 |
-
|
24 |
-
model = MinDalle(
|
25 |
-
is_mega=True,
|
26 |
-
is_reusable=True,
|
27 |
-
device='cuda',
|
28 |
-
dtype=torch.float32
|
29 |
-
)
|
30 |
-
|
31 |
-
log_gpu_memory()
|
32 |
-
|
33 |
-
def run_model(
|
34 |
-
text: str,
|
35 |
-
grid_size: int,
|
36 |
-
is_seamless: bool,
|
37 |
-
save_as_png: bool,
|
38 |
-
temperature: float,
|
39 |
-
supercondition: str,
|
40 |
-
top_k: str
|
41 |
-
) -> str:
|
42 |
-
torch.set_grad_enabled(False)
|
43 |
-
torch.backends.cudnn.enabled = True
|
44 |
-
torch.backends.cudnn.deterministic = False
|
45 |
-
torch.backends.cudnn.benchmark = True
|
46 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
47 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
48 |
-
|
49 |
-
print('text:', text)
|
50 |
-
print('grid_size:', grid_size)
|
51 |
-
print('is_seamless:', is_seamless)
|
52 |
-
print('temperature:', temperature)
|
53 |
-
print('supercondition:', supercondition)
|
54 |
-
print('top_k:', top_k)
|
55 |
-
|
56 |
-
try:
|
57 |
-
temperature = float(temperature)
|
58 |
-
assert(temperature > 1e-6)
|
59 |
-
except:
|
60 |
-
raise Exception('Temperature must be a positive nonzero number')
|
61 |
-
try:
|
62 |
-
grid_size = int(grid_size)
|
63 |
-
assert(grid_size <= 5)
|
64 |
-
assert(grid_size >= 1)
|
65 |
-
except:
|
66 |
-
raise Exception('Grid size must be between 1 and 5')
|
67 |
-
try:
|
68 |
-
top_k = int(top_k)
|
69 |
-
assert(top_k <= 16384)
|
70 |
-
assert(top_k >= 1)
|
71 |
-
except:
|
72 |
-
raise Exception('Top k must be between 1 and 16384')
|
73 |
-
|
74 |
-
with torch.no_grad():
|
75 |
-
image = model.generate_image(
|
76 |
-
text = text,
|
77 |
-
seed = -1,
|
78 |
-
grid_size = grid_size,
|
79 |
-
is_seamless = bool(is_seamless),
|
80 |
-
temperature = temperature,
|
81 |
-
supercondition_factor = float(supercondition),
|
82 |
-
top_k = top_k,
|
83 |
-
is_verbose = True
|
84 |
-
)
|
85 |
-
|
86 |
-
log_gpu_memory()
|
87 |
-
|
88 |
-
ext = 'png' if bool(save_as_png) else 'jpg'
|
89 |
-
filename = filename_from_text(text)
|
90 |
-
image_path = '{}.{}'.format(filename, ext)
|
91 |
-
image.save(image_path)
|
92 |
-
|
93 |
-
return image_path
|
94 |
-
|
95 |
-
demo = gradio.Blocks(analytics_enabled=True)
|
96 |
-
|
97 |
-
with demo:
|
98 |
-
with gradio.Row():
|
99 |
-
with gradio.Column():
|
100 |
-
input_text = gradio.Textbox(
|
101 |
-
label='Input Text',
|
102 |
-
value='Moai statue giving a TED Talk',
|
103 |
-
lines=3
|
104 |
-
)
|
105 |
-
run_button = gradio.Button(value='Generate Image').style(full_width=True)
|
106 |
-
output_image = gradio.Image(
|
107 |
-
value='examples/moai-statue.jpg',
|
108 |
-
label='Output Image',
|
109 |
-
type='file',
|
110 |
-
interactive=False
|
111 |
-
)
|
112 |
-
|
113 |
-
with gradio.Column():
|
114 |
-
gradio.Markdown('## Settings')
|
115 |
-
with gradio.Row():
|
116 |
-
grid_size = gradio.Slider(
|
117 |
-
label='Grid Size',
|
118 |
-
value=5,
|
119 |
-
minimum=1,
|
120 |
-
maximum=5,
|
121 |
-
step=1
|
122 |
-
)
|
123 |
-
save_as_png = gradio.Checkbox(
|
124 |
-
label='Output PNG',
|
125 |
-
value=False
|
126 |
-
)
|
127 |
-
is_seamless = gradio.Checkbox(
|
128 |
-
label='Seamless',
|
129 |
-
value=False
|
130 |
-
)
|
131 |
-
gradio.Markdown('#### Advanced')
|
132 |
-
with gradio.Row():
|
133 |
-
temperature = gradio.Number(
|
134 |
-
label='Temperature',
|
135 |
-
value=1
|
136 |
-
)
|
137 |
-
top_k = gradio.Dropdown(
|
138 |
-
label='Top-k',
|
139 |
-
choices=[str(2 ** i) for i in range(15)],
|
140 |
-
value='128'
|
141 |
-
)
|
142 |
-
supercondition = gradio.Dropdown(
|
143 |
-
label='Super Condition',
|
144 |
-
choices=[str(2 ** i) for i in range(2, 7)],
|
145 |
-
value='16'
|
146 |
-
)
|
147 |
-
|
148 |
-
gradio.Markdown(
|
149 |
-
"""
|
150 |
-
####
|
151 |
-
- **Input Text**: For long prompts, only the first 64 text tokens will be used to generate the image.
|
152 |
-
- **Grid Size**: Size of the image grid. 3x3 takes about 15 seconds.
|
153 |
-
- **Seamless**: Tile images in image token space instead of pixel space.
|
154 |
-
- **Temperature**: High temperature increases the probability of sampling low scoring image tokens.
|
155 |
-
- **Top-k**: Each image token is sampled from the top-k scoring tokens.
|
156 |
-
- **Super Condition**: Higher values can result in better agreement with the text.
|
157 |
-
"""
|
158 |
-
)
|
159 |
-
|
160 |
-
gradio.Examples(
|
161 |
-
examples=[
|
162 |
-
['Rusty Iron Man suit found abandoned in the woods being reclaimed by nature', 3, 'examples/rusty-iron-man.jpg'],
|
163 |
-
['Moai statue giving a TED Talk', 5, 'examples/moai-statue.jpg'],
|
164 |
-
['Court sketch of Godzilla on trial', 5, 'examples/godzilla-trial.jpg'],
|
165 |
-
['lofi nuclear war to relax and study to', 5, 'examples/lofi-nuclear-war.jpg'],
|
166 |
-
['Karl Marx slimed at Kids Choice Awards', 4, 'examples/marx-slimed.jpg'],
|
167 |
-
['Scientists trying to rhyme orange with banana', 4, 'examples/scientists-rhyme.jpg'],
|
168 |
-
['Jesus turning water into wine on Americas Got Talent', 5, 'examples/jesus-talent.jpg'],
|
169 |
-
['Elmo in a street riot throwing a Molotov cocktail, hyperrealistic', 5, 'examples/elmo-riot.jpg'],
|
170 |
-
['Trail cam footage of gollum eating watermelon', 4, 'examples/gollum.jpg'],
|
171 |
-
['Funeral at Whole Foods', 4, 'examples/funeral-whole-foods.jpg'],
|
172 |
-
['Singularity, hyperrealism', 5, 'examples/singularity.jpg'],
|
173 |
-
['Astronaut riding a horse hyperrealistic', 5, 'examples/astronaut-horse.jpg'],
|
174 |
-
['An astronaut walking on Mars next to a Starship rocket, realistic', 5, 'examples/astronaut-mars.jpg'],
|
175 |
-
['Nuclear explosion broccoli', 4, 'examples/nuclear-broccoli.jpg'],
|
176 |
-
['Dali painting of WALL·E', 5, 'examples/dali-walle.jpg'],
|
177 |
-
['Cleopatra checking her iPhone', 4, 'examples/cleopatra-iphone.jpg'],
|
178 |
-
],
|
179 |
-
inputs=[
|
180 |
-
input_text,
|
181 |
-
grid_size,
|
182 |
-
output_image
|
183 |
-
],
|
184 |
-
examples_per_page=20
|
185 |
-
)
|
186 |
-
|
187 |
-
run_button.click(
|
188 |
-
fn=run_model,
|
189 |
-
inputs=[
|
190 |
-
input_text,
|
191 |
-
grid_size,
|
192 |
-
is_seamless,
|
193 |
-
save_as_png,
|
194 |
-
temperature,
|
195 |
-
supercondition,
|
196 |
-
top_k
|
197 |
-
],
|
198 |
-
outputs=[
|
199 |
-
output_image
|
200 |
-
]
|
201 |
-
)
|
202 |
|
203 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
with gr.Blocks() as demo:
|
4 |
+
gr.Gallery(["examples/dali-walle.jpg"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
demo.launch()
|