Muennighoff commited on
Commit
0d4db15
β€’
1 Parent(s): 569183a
Files changed (1) hide show
  1. app.py +137 -25
app.py CHANGED
@@ -23,55 +23,160 @@ def get_blocks_party_spaces():
23
  def make_clickable_model(model_name):
24
  # remove user from model name
25
  model_name_show = ' '.join(model_name.split('/')[1:])
26
-
27
  link = "https://huggingface.co/" + model_name
28
- return f'<a target="_blank" href="{link}">{model_name_show}</a>'
 
29
 
30
- def get_mteb_data(task="Clustering", metric="v_measure"):
31
  api = HfApi()
32
  models = api.list_models(filter="mteb")
33
  df_list = []
34
  for model in models:
35
  readme_path = hf_hub_download(model.modelId, filename="README.md")
36
  meta = metadata_load(readme_path)
37
- out = list(
38
- map(
39
- lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
40
- filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"])
 
 
 
 
 
 
 
 
 
 
 
41
  )
42
- )
43
  out = {k: v for d in out for k, v in d.items()}
44
- # Does not work https://github.com/gradio-app/gradio/issues/2375
45
- # Turning it into HTML will make the formatting ugly
46
- # make_clickable_model(model.modelId)
47
- out["Model"] = model.modelId
48
  df_list.append(out)
49
  df = pd.DataFrame(df_list)
50
- # Put Model in the beginning & sort the others
51
- df = df[[df.columns[-1]] + sorted(df.columns[:-1])]
52
- return df
 
 
 
 
53
 
54
  block = gr.Blocks()
55
 
56
  with block:
57
  gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""")
58
  with gr.Tabs():
59
- with gr.TabItem("Blocks Party Leaderboard"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  with gr.Row():
61
- data = gr.components.Dataframe(type="pandas")
 
 
 
 
 
62
  with gr.Row():
63
  data_run = gr.Button("Refresh")
64
- data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
65
- with gr.TabItem("Clustering"):
 
 
66
  with gr.Row():
67
- gr.Markdown("""Leaderboard for Clustering""")
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  with gr.Row():
69
- data_clustering = gr.components.Dataframe(type="pandas")
 
 
 
 
70
  with gr.Row():
71
  data_run = gr.Button("Refresh")
72
- task = gr.Variable(value="Clustering")
73
- metric = gr.Variable(value="v_measure")
74
- data_run.click(get_mteb_data, inputs=[task, metric], outputs=data_clustering)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  with gr.TabItem("Blocks Party Leaderboard2"):
76
  with gr.Row():
77
  data = gr.components.Dataframe(type="pandas")
@@ -79,7 +184,14 @@ with block:
79
  data_run = gr.Button("Refresh")
80
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
81
  # running the function on page load in addition to when the button is clicked
82
- block.load(get_mteb_data, inputs=[task, metric], outputs=data_clustering)
 
 
 
 
 
 
 
83
  block.load(get_blocks_party_spaces, inputs=None, outputs=data)
84
 
85
  block.launch()
 
23
  def make_clickable_model(model_name):
24
  # remove user from model name
25
  model_name_show = ' '.join(model_name.split('/')[1:])
 
26
  link = "https://huggingface.co/" + model_name
27
+ return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name_show}</a>'
28
+
29
 
30
+ def get_mteb_data(task="Clustering", metric="v_measure", lang=None):
31
  api = HfApi()
32
  models = api.list_models(filter="mteb")
33
  df_list = []
34
  for model in models:
35
  readme_path = hf_hub_download(model.modelId, filename="README.md")
36
  meta = metadata_load(readme_path)
37
+ # Use "get" instead of dict indexing to ignore incompat metadata instead of erroring out
38
+ if lang is None:
39
+ out = list(
40
+ map(
41
+ lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
42
+ filter(lambda x: x.get("task", {}).get("type", "") == task, meta["model-index"][0]["results"])
43
+ )
44
+ )
45
+ else:
46
+ # Multilingual
47
+ out = list(
48
+ map(
49
+ lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
50
+ filter(lambda x: (x.get("task", {}).get("type", "") == task) and (x.get("dataset", {}).get("config", "") in ("default", *lang)), meta["model-index"][0]["results"])
51
+ )
52
  )
 
53
  out = {k: v for d in out for k, v in d.items()}
54
+ out["Model"] = make_clickable_model(model.modelId)
 
 
 
55
  df_list.append(out)
56
  df = pd.DataFrame(df_list)
57
+ # Put 'Model' column first
58
+ cols = sorted(list(df.columns))
59
+ cols.insert(0, cols.pop(cols.index("Model")))
60
+ df = df[cols]
61
+
62
+ df.fillna('', inplace=True)
63
+ return df.astype(str) # Cast to str as Gradio does not accept floats
64
 
65
  block = gr.Blocks()
66
 
67
  with block:
68
  gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""")
69
  with gr.Tabs():
70
+ with gr.TabItem("Classification"):
71
+ with gr.TabItem("English"):
72
+ with gr.Row():
73
+ gr.Markdown("""Leaderboard for Classification""")
74
+ with gr.Row():
75
+ data_classification_en = gr.components.Dataframe(
76
+ datatype=["markdown"] * 500,
77
+ type="pandas",
78
+ col_count=(13, "fixed"),
79
+ )
80
+ with gr.Row():
81
+ data_run = gr.Button("Refresh")
82
+ task_classification_en = gr.Variable(value="Classification")
83
+ metric_classification_en = gr.Variable(value="accuracy")
84
+ lang_classification_en = gr.Variable(value=["en"])
85
+ data_run.click(get_mteb_data, inputs=[task_classification_en, metric_classification_en, lang_classification_en], outputs=data_classification_en)
86
+ with gr.TabItem("Multilingual"):
87
+ with gr.Row():
88
+ gr.Markdown("""Multilingual Classification""")
89
+ with gr.Row():
90
+ data_classification = gr.components.Dataframe(
91
+ datatype=["markdown"] * 500,
92
+ type="pandas",
93
+ )
94
+ with gr.Row():
95
+ data_run = gr.Button("Refresh")
96
+ task_classification = gr.Variable(value="Classification")
97
+ metric_classification = gr.Variable(value="accuracy")
98
+ data_run.click(get_mteb_data, inputs=[task_classification, metric_classification], outputs=data_classification)
99
+ with gr.TabItem("Clustering"):
100
  with gr.Row():
101
+ gr.Markdown("""Leaderboard for Clustering""")
102
+ with gr.Row():
103
+ data_clustering = gr.components.Dataframe(
104
+ datatype=["markdown"] * 500,
105
+ type="pandas",
106
+ )
107
  with gr.Row():
108
  data_run = gr.Button("Refresh")
109
+ task_clustering = gr.Variable(value="Clustering")
110
+ metric_clustering = gr.Variable(value="v_measure")
111
+ data_run.click(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
112
+ with gr.TabItem("Retrieval"):
113
  with gr.Row():
114
+ gr.Markdown("""Leaderboard for Retrieval""")
115
+ with gr.Row():
116
+ data_retrieval = gr.components.Dataframe(
117
+ datatype=["markdown"] * 500,
118
+ type="pandas",
119
+ )
120
+ with gr.Row():
121
+ data_run = gr.Button("Refresh")
122
+ task_retrieval = gr.Variable(value="Retrieval")
123
+ metric_retrieval = gr.Variable(value="ndcg_at_10")
124
+ data_run.click(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
125
+ with gr.TabItem("Reranking"):
126
+ with gr.Row():
127
+ gr.Markdown("""Leaderboard for Reranking""")
128
  with gr.Row():
129
+ data_reranking = gr.components.Dataframe(
130
+ datatype=["markdown"] * 500,
131
+ type="pandas",
132
+ #col_count=(12, "fixed"),
133
+ )
134
  with gr.Row():
135
  data_run = gr.Button("Refresh")
136
+ task_reranking = gr.Variable(value="Reranking")
137
+ metric_reranking = gr.Variable(value="map")
138
+ data_run.click(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
139
+ with gr.TabItem("STS"):
140
+ with gr.TabItem("English"):
141
+ with gr.Row():
142
+ gr.Markdown("""Leaderboard for STS""")
143
+ with gr.Row():
144
+ data_sts_en = gr.components.Dataframe(
145
+ datatype=["markdown"] * 500,
146
+ type="pandas",
147
+ )
148
+ with gr.Row():
149
+ data_run_en = gr.Button("Refresh")
150
+ task_sts_en = gr.Variable(value="STS")
151
+ metric_sts_en = gr.Variable(value="cos_sim_spearman")
152
+ lang_sts_en = gr.Variable(value=["en", "en-en"])
153
+ data_run.click(get_mteb_data, inputs=[task_sts_en, metric_sts_en, lang_sts_en], outputs=data_sts_en)
154
+ with gr.TabItem("Multilingual"):
155
+ with gr.Row():
156
+ gr.Markdown("""Leaderboard for STS""")
157
+ with gr.Row():
158
+ data_sts = gr.components.Dataframe(
159
+ datatype=["markdown"] * 500,
160
+ type="pandas",
161
+ )
162
+ with gr.Row():
163
+ data_run = gr.Button("Refresh")
164
+ task_sts = gr.Variable(value="STS")
165
+ metric_sts = gr.Variable(value="cos_sim_spearman")
166
+ data_run.click(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
167
+ with gr.TabItem("Summarization"):
168
+ with gr.Row():
169
+ gr.Markdown("""Leaderboard for Summarization""")
170
+ with gr.Row():
171
+ data_summarization = gr.components.Dataframe(
172
+ datatype=["markdown"] * 500,
173
+ type="pandas",
174
+ )
175
+ with gr.Row():
176
+ data_run = gr.Button("Refresh")
177
+ task_summarization = gr.Variable(value="Summarization")
178
+ metric_summarization = gr.Variable(value="cos_sim_spearman")
179
+ data_run.click(get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization)
180
  with gr.TabItem("Blocks Party Leaderboard2"):
181
  with gr.Row():
182
  data = gr.components.Dataframe(type="pandas")
 
184
  data_run = gr.Button("Refresh")
185
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
186
  # running the function on page load in addition to when the button is clicked
187
+ block.load(get_mteb_data, inputs=[task_classification_en, metric_classification_en], outputs=data_classification_en)
188
+ block.load(get_mteb_data, inputs=[task_classification, metric_classification], outputs=data_classification)
189
+ block.load(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
190
+ block.load(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
191
+ block.load(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
192
+ block.load(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
193
+ block.load(get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization)
194
+
195
  block.load(get_blocks_party_spaces, inputs=None, outputs=data)
196
 
197
  block.launch()