|
import gradio as gr |
|
import torch |
|
from torchaudio.sox_effects import apply_effects_file |
|
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
OUTPUT_OK = ( |
|
""" |
|
<div class="container"> |
|
<div class="row"><h1 style="text-align: center">The speakers are</h1></div> |
|
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div> |
|
<div class="row"><h1 style="text-align: center">similar</h1></div> |
|
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div> |
|
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row"> |
|
</div> |
|
""" |
|
) |
|
OUTPUT_FAIL = ( |
|
""" |
|
<div class="container"> |
|
<div class="row"><h1 style="text-align: center">The speakers are</h1></div> |
|
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div> |
|
<div class="row"><h1 style="text-align: center">similar</h1></div> |
|
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div> |
|
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row"> |
|
</div> |
|
""" |
|
) |
|
|
|
EFFECTS = [ |
|
["remix", "-"], |
|
["channels", "1"], |
|
["rate", "16000"], |
|
["gain", "-1.0"], |
|
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"], |
|
["trim", "0", "10"], |
|
] |
|
|
|
THRESHOLD = 0.85 |
|
|
|
model_name = "microsoft/unispeech-sat-base-plus-sv" |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) |
|
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device) |
|
cosine_sim = torch.nn.CosineSimilarity(dim=-1) |
|
|
|
|
|
def similarity_fn(path1, path2): |
|
if not (path1 and path2): |
|
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' |
|
|
|
wav1, _ = apply_effects_file(path1, EFFECTS) |
|
wav2, _ = apply_effects_file(path2, EFFECTS) |
|
print(wav1.shape, wav2.shape) |
|
|
|
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) |
|
input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) |
|
|
|
with torch.no_grad(): |
|
emb1 = model(input1).embeddings |
|
emb2 = model(input2).embeddings |
|
emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu() |
|
emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu() |
|
similarity = cosine_sim(emb1, emb2).numpy()[0] |
|
|
|
if similarity >= THRESHOLD: |
|
output = OUTPUT_OK.format(similarity * 100) |
|
else: |
|
output = OUTPUT_FAIL.format(similarity * 100) |
|
|
|
return output |
|
|
|
|
|
inputs = [ |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"), |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"), |
|
] |
|
output = gr.outputs.HTML(label="") |
|
|
|
|
|
description = ( |
|
"This demo from Microsoft will compare two speech samples and determine if they are from the same speaker. " |
|
"Try it with your own voice!" |
|
) |
|
article = ( |
|
"<p style='text-align: center'>" |
|
"<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>ποΈ Learn more about UniSpeech-SAT</a> | " |
|
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>π UniSpeech-SAT paper</a> | " |
|
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>π X-Vector paper</a>" |
|
"</p>" |
|
) |
|
examples = [ |
|
["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"], |
|
["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"], |
|
] |
|
|
|
interface = gr.Interface( |
|
fn=similarity_fn, |
|
inputs=inputs, |
|
outputs=output, |
|
description=description, |
|
layout="horizontal", |
|
theme="huggingface", |
|
allow_flagging=False, |
|
live=False, |
|
examples=examples, |
|
) |
|
interface.launch(enable_queue=True) |
|
|