Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,426 Bytes
7dd6758 b6144ba 7dd6758 50b9c9c 7dd6758 e13ce10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# This is a small and fast sklearn model, so the run-gradio script trains a model and deploys it
import pandas as pd
import numpy as np
import sklearn
import gradio as gr
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
data = pd.read_csv('https://raw.githubusercontent.com/gradio-app/titanic/master/train.csv')
data.head()
def encode_ages(df): # Binning ages
df.Age = df.Age.fillna(-0.5)
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
categories = pd.cut(df.Age, bins, labels=False)
df.Age = categories
return df
def encode_fares(df): # Binning fares
df.Fare = df.Fare.fillna(-0.5)
bins = (-1, 0, 8, 15, 31, 1000)
categories = pd.cut(df.Fare, bins, labels=False)
df.Fare = categories
return df
def encode_sex(df):
mapping = {"male": 0, "female": 1}
return df.replace({'Sex': mapping})
def transform_features(df):
df = encode_ages(df)
df = encode_fares(df)
df = encode_sex(df)
return df
train = data[['PassengerId', 'Fare', 'Age', 'Sex', 'Survived']]
train = transform_features(train)
train.head()
X_all = train.drop(['Survived', 'PassengerId'], axis=1)
y_all = train['Survived']
num_test = 0.20
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23)
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
def predict_survival(sex, age, fare):
df = pd.DataFrame.from_dict({'Sex': [sex], 'Age': [age], 'Fare': [fare]})
df = encode_sex(df)
df = encode_fares(df)
df = encode_ages(df)
pred = clf.predict_proba(df)[0]
return {'Perishes': float(pred[0]), 'Survives': float(pred[1])}
sex = gr.Radio(['female', 'male'], label="Sex", value="male")
age = gr.Slider(minimum=0, maximum=120, default=22, label="Age")
fare = gr.Slider(minimum=0, maximum=200, default=100, label="Fare (british pounds)")
gr.Interface(predict_survival, [sex, age, fare], "label", live=True, thumbnail="https://raw.githubusercontent.com/gradio-app/hub-titanic/master/thumbnail.png", analytics_enabled=False,
theme="soft", title="Surviving the Titanic", description="What is the probability that a passenger on the Titanic would survive the famous wreck? It depends on their demographics as this live interface demonstrates.").launch();
|