from huggingface_hub import InferenceClient from pathlib import Path import gradio as gr import os MODEL_NAME = "meta-llama/Meta-Llama-3-70b-Instruct" def split_text_into_chunks(text, chunk_size=600): words = text.split() chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] return chunks def clean_transcript(audio_file, options, prompt, transcript: str): text = f"### {Path(audio_file).with_suffix('').name}\n\n" if options == []: text += transcript else: chunks = split_text_into_chunks(transcript) for chunk in chunks: messages = [ {"role": "user", "content": prompt + "\n" + chunk} ] client = InferenceClient(model=MODEL_NAME, token=os.getenv("HF_TOKEN")) for c in client.chat_completion(messages, max_tokens=1000, stream=True): token = c.choices[0].delta.content text += token or "" yield text, None # write text to md file md_file = Path(audio_file).with_suffix('.md') md_file.write_text(text) return text, gr.DownloadButton(interactive=True, value=md_file)