Spaces:
Runtime error
Runtime error
speech-test
commited on
Commit
β’
670efcf
1
Parent(s):
fb51e28
Add samples
Browse files- app.py +19 -15
- samples/KirstenDunst.wav +0 -0
- samples/TobeyMaguire.wav +0 -0
- samples/TomHolland.wav +0 -0
- samples/Zendaya.wav +0 -0
app.py
CHANGED
@@ -14,7 +14,7 @@ OUTPUT_OK = STYLE + """
|
|
14 |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
|
15 |
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
16 |
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
|
17 |
-
<div class="row"><small style="text-align: center">(You must get
|
18 |
</div>
|
19 |
"""
|
20 |
OUTPUT_FAIL = STYLE + """
|
@@ -23,18 +23,20 @@ OUTPUT_FAIL = STYLE + """
|
|
23 |
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
|
24 |
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
25 |
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
|
26 |
-
<div class="row"><small style="text-align: center">(You must get
|
27 |
</div>
|
28 |
"""
|
29 |
|
30 |
EFFECTS = [
|
|
|
31 |
["channels", "1"],
|
32 |
["rate", "16000"],
|
33 |
-
["gain", "-
|
34 |
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
|
|
|
35 |
]
|
36 |
|
37 |
-
THRESHOLD = 0.
|
38 |
|
39 |
model_name = "microsoft/unispeech-sat-base-plus-sv"
|
40 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
@@ -42,12 +44,12 @@ model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
|
|
42 |
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
43 |
|
44 |
|
45 |
-
def similarity_fn(
|
46 |
-
if not (
|
47 |
-
return '<b style="color:red">ERROR: Please record
|
48 |
|
49 |
-
wav1, _ = apply_effects_file(
|
50 |
-
wav2, _ = apply_effects_file(
|
51 |
print(wav1.shape, wav2.shape)
|
52 |
|
53 |
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
@@ -70,20 +72,18 @@ def similarity_fn(mic_path1, file_path1, mic_path2, file_path2):
|
|
70 |
|
71 |
inputs = [
|
72 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
|
73 |
-
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="or"),
|
74 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
|
75 |
-
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="or"),
|
76 |
]
|
77 |
output = gr.outputs.HTML(label="")
|
78 |
|
79 |
|
80 |
description = (
|
81 |
-
"
|
82 |
-
"
|
83 |
)
|
84 |
article = (
|
85 |
"<p style='text-align: center'>"
|
86 |
-
"<a href='https://huggingface.co/microsoft/unispeech-sat-large' target='_blank'>ποΈ Learn more about UniSpeech-SAT</a> | "
|
87 |
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>π UniSpeech-SAT paper</a> | "
|
88 |
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>π X-Vector paper</a>"
|
89 |
"</p>"
|
@@ -93,12 +93,16 @@ interface = gr.Interface(
|
|
93 |
fn=similarity_fn,
|
94 |
inputs=inputs,
|
95 |
outputs=output,
|
96 |
-
title="
|
97 |
description=description,
|
98 |
article=article,
|
99 |
layout="horizontal",
|
100 |
theme="huggingface",
|
101 |
allow_flagging=False,
|
102 |
live=False,
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
interface.launch(enable_queue=True)
|
|
|
14 |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
|
15 |
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
16 |
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
|
17 |
+
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
18 |
</div>
|
19 |
"""
|
20 |
OUTPUT_FAIL = STYLE + """
|
|
|
23 |
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
|
24 |
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
25 |
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
|
26 |
+
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
27 |
</div>
|
28 |
"""
|
29 |
|
30 |
EFFECTS = [
|
31 |
+
['remix', '-'],
|
32 |
["channels", "1"],
|
33 |
["rate", "16000"],
|
34 |
+
["gain", "-1.0"],
|
35 |
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
|
36 |
+
['trim', '0', '10'],
|
37 |
]
|
38 |
|
39 |
+
THRESHOLD = 0.85
|
40 |
|
41 |
model_name = "microsoft/unispeech-sat-base-plus-sv"
|
42 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
44 |
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
45 |
|
46 |
|
47 |
+
def similarity_fn(path1, path2):
|
48 |
+
if not (path1 and path2):
|
49 |
+
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
|
50 |
|
51 |
+
wav1, _ = apply_effects_file(path1, EFFECTS)
|
52 |
+
wav2, _ = apply_effects_file(path2, EFFECTS)
|
53 |
print(wav1.shape, wav2.shape)
|
54 |
|
55 |
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
|
|
72 |
|
73 |
inputs = [
|
74 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
|
|
|
75 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
|
|
|
76 |
]
|
77 |
output = gr.outputs.HTML(label="")
|
78 |
|
79 |
|
80 |
description = (
|
81 |
+
"This demo will compare two speech samples and determine if they are from the same speaker. "
|
82 |
+
"Try it with your own voice!"
|
83 |
)
|
84 |
article = (
|
85 |
"<p style='text-align: center'>"
|
86 |
+
"<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>ποΈ Learn more about UniSpeech-SAT</a> | "
|
87 |
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>π UniSpeech-SAT paper</a> | "
|
88 |
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>π X-Vector paper</a>"
|
89 |
"</p>"
|
|
|
93 |
fn=similarity_fn,
|
94 |
inputs=inputs,
|
95 |
outputs=output,
|
96 |
+
title="Voice Authentication with UniSpeech-SAT + X-Vectors",
|
97 |
description=description,
|
98 |
article=article,
|
99 |
layout="horizontal",
|
100 |
theme="huggingface",
|
101 |
allow_flagging=False,
|
102 |
live=False,
|
103 |
+
examples=[
|
104 |
+
["samples/TobeyMaguire.wav", "samples/TomHolland.wav"],
|
105 |
+
["samples/KirstenDunst.wav", "samples/Zendaya.wav"],
|
106 |
+
]
|
107 |
)
|
108 |
interface.launch(enable_queue=True)
|
samples/KirstenDunst.wav
ADDED
Binary file (1.29 MB). View file
|
|
samples/TobeyMaguire.wav
ADDED
Binary file (1.62 MB). View file
|
|
samples/TomHolland.wav
ADDED
Binary file (723 kB). View file
|
|
samples/Zendaya.wav
ADDED
Binary file (1.09 MB). View file
|
|