Spaces:
Paused
Paused
Add necessary file
Browse files- app.py +97 -0
- process_audio.py +16 -0
- requirements.txt +5 -0
- write_srt.py +31 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys, re
|
2 |
+
import shutil
|
3 |
+
import argparse
|
4 |
+
import subprocess
|
5 |
+
import soundfile
|
6 |
+
from process_audio import segment_audio
|
7 |
+
from write_srt import write_to_file
|
8 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
9 |
+
import torch
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
|
13 |
+
model = "facebook/wav2vec2-large-960h-lv60-self"
|
14 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model)
|
15 |
+
asr_model = Wav2Vec2ForCTC.from_pretrained(model)#.to('cuda')
|
16 |
+
vocab_dict = tokenizer.get_vocab()
|
17 |
+
sort_vocab = sorted((value, key) for (key,value) in vocab_dict.items())
|
18 |
+
vocab = ([x[1].replace("|", " ") if x[1] not in tokenizer.all_special_tokens else "_" for x in sort_vocab])
|
19 |
+
|
20 |
+
|
21 |
+
# Line count for SRT file
|
22 |
+
line_count = 0
|
23 |
+
|
24 |
+
def sort_alphanumeric(data):
|
25 |
+
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
26 |
+
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
27 |
+
|
28 |
+
return sorted(data, key = alphanum_key)
|
29 |
+
|
30 |
+
|
31 |
+
def transcribe_audio(tokenizer, asr_model, audio_file, file_handle):
|
32 |
+
# Run Wav2Vec2.0 inference on each audio file generated after VAD segmentation.
|
33 |
+
global line_count
|
34 |
+
|
35 |
+
speech, rate = soundfile.read(audio_file)
|
36 |
+
input_values = tokenizer(speech, sampling_rate=16000, return_tensors = "pt", padding='longest').input_values
|
37 |
+
logits = asr_model(input_values).logits
|
38 |
+
prediction = torch.argmax(logits, dim = -1)
|
39 |
+
|
40 |
+
|
41 |
+
infered_text = tokenizer.batch_decode(prediction)[0].lower()
|
42 |
+
infered_text = re.sub(r' ', ' ', infered_text)
|
43 |
+
infered_text = re.sub(r'\bi\s', 'I ', infered_text)
|
44 |
+
infered_text = re.sub(r'\si$', ' I', infered_text)
|
45 |
+
infered_text = re.sub(r'i\'', 'I\'', infered_text)
|
46 |
+
|
47 |
+
limits = audio_file.split(os.sep)[-1][:-4].split("_")[-1].split("-")
|
48 |
+
|
49 |
+
if len(infered_text) > 1:
|
50 |
+
line_count += 1
|
51 |
+
write_to_file(file_handle, infered_text, line_count, limits)
|
52 |
+
|
53 |
+
|
54 |
+
def get_subs(input_file):
|
55 |
+
# Get directory for audio
|
56 |
+
base_directory = os.getcwd()
|
57 |
+
audio_directory = os.path.join(base_directory, "audio")
|
58 |
+
if os.path.isdir(audio_directory):
|
59 |
+
shutil.rmtree(audio_directory)
|
60 |
+
os.mkdir(audio_directory)
|
61 |
+
|
62 |
+
# Extract audio from video file
|
63 |
+
video_file = input_file
|
64 |
+
audio_file = audio_directory+'/temp.wav'
|
65 |
+
command = ["ffmpeg", "-i", video_file, "-ac", "1", "-ar", "16000","-vn", "-f", "wav", audio_file]
|
66 |
+
subprocess.run(command)
|
67 |
+
|
68 |
+
video_file = input_file.split('/')[-1][:-4]
|
69 |
+
srt_directory = os.path.join(base_directory, "srt")
|
70 |
+
srt_file_name = os.path.join(srt_directory, video_file + ".srt")
|
71 |
+
|
72 |
+
# Split audio file based on VAD silent segments
|
73 |
+
segment_audio(audio_file)
|
74 |
+
os.remove(audio_file)
|
75 |
+
|
76 |
+
# Output SRT file
|
77 |
+
file_handle = open(srt_file_name, "a+")
|
78 |
+
file_handle.seek(0)
|
79 |
+
for file in sort_alphanumeric(os.listdir(audio_directory)):
|
80 |
+
audio_segment_path = os.path.join(audio_directory, file)
|
81 |
+
if audio_segment_path.split(os.sep)[-1] != audio_file.split(os.sep)[-1]:
|
82 |
+
transcribe_audio(tokenizer, asr_model, audio_segment_path, file_handle)
|
83 |
+
|
84 |
+
file_handle.close()
|
85 |
+
shutil.rmtree(audio_directory)
|
86 |
+
|
87 |
+
return srt_file_name
|
88 |
+
|
89 |
+
|
90 |
+
gradio_ui = gr.Interface(
|
91 |
+
fn=get_subs,
|
92 |
+
title="Autoblog - Video to Subtitle",
|
93 |
+
inputs=gr.inputs.Video(label="Upload Video File"),
|
94 |
+
outputs=gr.outputs.File(label="Auto-Transcript")
|
95 |
+
)
|
96 |
+
|
97 |
+
gradio_ui.launch(inline=False)
|
process_audio.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import auditok
|
2 |
+
|
3 |
+
|
4 |
+
def segment_audio(audio_name):
|
5 |
+
audio_regions = auditok.split(audio_name,
|
6 |
+
min_dur=2, # minimum duration of a valid audio in seconds
|
7 |
+
max_dur=8, # maximum duration of an audio segment
|
8 |
+
max_silence=0.8, # maximum duration of tolerated continuous silence within an event
|
9 |
+
energy_threshold=55, # threshold of detection
|
10 |
+
sampling_rate=16000
|
11 |
+
)
|
12 |
+
|
13 |
+
for i, r in enumerate(audio_regions):
|
14 |
+
filename = r.save(audio_name[:-4]+"_{meta.start:.3f}-{meta.end:.3f}.wav")
|
15 |
+
|
16 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soundfile
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
auditok
|
write_srt.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datetime
|
3 |
+
|
4 |
+
def write_to_file(file_handle, inferred_text, line_count, limits):
|
5 |
+
"""Write the inferred text to SRT file
|
6 |
+
Follows a specific format for SRT files
|
7 |
+
|
8 |
+
Args:
|
9 |
+
file_handle : SRT file handle
|
10 |
+
inferred_text : text to be written
|
11 |
+
line_count : subtitle line count
|
12 |
+
limits : starting and ending times for text
|
13 |
+
"""
|
14 |
+
|
15 |
+
sep = ','
|
16 |
+
|
17 |
+
d = str(datetime.timedelta(seconds=float(limits[0])))
|
18 |
+
try:
|
19 |
+
from_dur = "0" + str(d.split(".")[0]) + sep + str(d.split(".")[-1][:2])
|
20 |
+
except:
|
21 |
+
from_dur = "0" + str(d) + sep + "00"
|
22 |
+
|
23 |
+
d = str(datetime.timedelta(seconds=float(limits[1])))
|
24 |
+
try:
|
25 |
+
to_dur = "0" + str(d.split(".")[0]) + sep + str(d.split(".")[-1][:2])
|
26 |
+
except:
|
27 |
+
to_dur = "0" + str(d) + sep + "00"
|
28 |
+
|
29 |
+
file_handle.write(str(line_count) + "\n")
|
30 |
+
file_handle.write(from_dur + " --> " + to_dur + "\n")
|
31 |
+
file_handle.write(inferred_text + "\n\n")
|