abokbot's picture
Update app.py
3ad472b
raw
history blame
3.28 kB
import streamlit as st
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import torch
from huggingface_hub import hf_hub_download
embedding_path = "abokbot/wikipedia-embedding"
st.header("Wikipedia Search Engine app")
st_model_load = st.text('Loading wikipedia embedding...')
@st.cache_resource
def load_embedding():
print("Loading embedding...")
hf_hub_download(repo_id="abokbot/wikipedia-embedding", filename="simple_wikipedia_embedding.pt")
wikipedia_embedding = torch.load("simple_wikipedia_embedding.pt")
print("Embedding loaded!")
return wikipedia_embedding
wikipedia_embedding = load_embedding()
st.success('Embedding loaded!')
st_model_load.text("")
def load_encoders():
print("Loading encoders...")
bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32
cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2')
return bi_encoder, cross_encoder
bi_encoder, cross_encoder = load_encoders()
st.success('Encoders loaded!')
st_model_load.text("")
if 'text' not in st.session_state:
st.session_state.text = ""
st_text_area = st.text_area(
'Enter query (e.g. What is the capital city of Kenya? or Number of deputees in French parliement)',
value=st.session_state.text,
height=100
)
"""
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
# cf https://www.sbert.net/docs/pretrained-models/msmarco-v3.html
bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2')
def search(query):
print("Input question:", query)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = question_embedding.cuda()
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, dataset["text"][hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-3 hits from re-ranker
print("\n-------------------------\n")
print("Top-3 Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
for hit in hits[0:3]:
print("score: ", round(hit['cross-score'], 3),"\n",
"title: ", dataset["title"][hit['corpus_id']], "\n",
"substract: ", dataset["text"][hit['corpus_id']].replace("\n", " "), "\n",
"link: ", dataset["url"][hit['corpus_id']],"\n")
"""