import streamlit as st from datasets import load_dataset from sentence_transformers import SentenceTransformer, CrossEncoder, util import torch from huggingface_hub import hf_hub_download embedding_path = "abokbot/wikipedia-embedding" st.header("Wikipedia Search Engine app") st_model_load = st.text('Loading embeddings, encoders and dataset (takes about 5min)') @st.cache_resource def load_embedding(): print("Loading embedding...") path = hf_hub_download(repo_id="abokbot/wikipedia-embedding", filename="wikipedia_en_embedding.pt") wikipedia_embedding = torch.load(path, map_location=torch.device('cpu')) print("Embedding loaded!") return wikipedia_embedding wikipedia_embedding = load_embedding() @st.cache_resource def load_encoders(): print("Loading encoders...") bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens top_k = 32 cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2') print("Encoders loaded!") return bi_encoder, cross_encoder bi_encoder, cross_encoder = load_encoders() @st.cache_resource def load_wikipedia_dataset(): print("Loading wikipedia dataset...") dataset = load_dataset("abokbot/wikipedia-first-paragraph")["train"] print("Dataset loaded!") return dataset dataset = load_wikipedia_dataset() st.success('Search engine ready') st_model_load.text("") if 'text' not in st.session_state: st.session_state.text = "" st.markdown("Enter query") st_text_area = st.text_area( 'E.g. What is the hashing trick? or Largest city in Morocco', value=st.session_state.text, height=25 ) def search(): st.session_state.text = st_text_area query = st_text_area print("Input question:", query) ##### Sematic Search ##### print("Semantic Search") # Encode the query using the bi-encoder and find potentially relevant passages top_k = 32 question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, wikipedia_embedding, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder print("Re-Ranking") cross_inp = [[query, dataset[hit['corpus_id']]["text"]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) # Output of top-3 hits from re-ranker print("\n-------------------------\n") print("Top-3 Cross-Encoder Re-ranker hits") results = [] for hit in hits[:3]: results.append( { "score": round(hit['cross-score'], 3), "title": dataset[hit['corpus_id']]["title"], "abstract": dataset[hit['corpus_id']]["text"].replace("\n", " "), "link": dataset[hit['corpus_id']]["url"] } ) return results # search button st_search_button = st.button('Search') if st_search_button: results = search() st.subheader("Top-3 Search results") for i, result in enumerate(results): st.markdown(f"#### Result {i+1}") st.markdown("**Wikipedia article:** " + result["title"]) st.markdown("**Link:** " + result["link"]) st.markdown("**First paragraph:** " + result["abstract"]) st.text("")