import streamlit as st from sentence_transformers import SentenceTransformer, CrossEncoder, util import torch from huggingface_hub import hf_hub_download embedding_path = "abokbot/wikipedia-embedding" st.header("Wikipedia Search Engine app") st_model_load = st.text('Loading wikipedia embedding...') @st.cache_resource def load_embedding(): print("Loading embedding...") hf_hub_download(repo_id="abokbot/wikipedia-embedding", filename="simple_wikipedia_embedding.pt") wikipedia_embedding = torch.load("simple_wikipedia_embedding.pt") print("Embedding loaded!") return wikipedia_embedding wikipedia_embedding = load_embedding() st.success('Embedding loaded!') st_model_load.text("") def load_encoders(): print("Loading encoders...") bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens top_k = 32 cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2') return bi_encoder, cross_encoder bi_encoder, cross_encoder = load_encoders() st.success('Encoders loaded!') st_model_load.text("") if 'text' not in st.session_state: st.session_state.text = "" st_text_area = st.text_area( 'Enter query (e.g. What is the capital city of Kenya? or Number of deputees in French parliement)', value=st.session_state.text, height=100 ) """ #We use the Bi-Encoder to encode all passages, so that we can use it with sematic search # cf https://www.sbert.net/docs/pretrained-models/msmarco-v3.html bi_encoder = SentenceTransformer('msmarco-MiniLM-L-6-v3') bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens top_k = 32 #Number of passages we want to retrieve with the bi-encoder #The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality cross_encoder = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2') def search(query): print("Input question:", query) ##### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = bi_encoder.encode(query, convert_to_tensor=True) question_embedding = question_embedding.cuda() hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, dataset["text"][hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Output of top-3 hits from re-ranker print("\n-------------------------\n") print("Top-3 Cross-Encoder Re-ranker hits") hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for hit in hits[0:3]: print("score: ", round(hit['cross-score'], 3),"\n", "title: ", dataset["title"][hit['corpus_id']], "\n", "substract: ", dataset["text"][hit['corpus_id']].replace("\n", " "), "\n", "link: ", dataset["url"][hit['corpus_id']],"\n") """