First commit
Browse files- README.md +11 -5
- app.py +225 -73
- requirements.txt +10 -4
README.md
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
---
|
|
|
2 |
title: SVM
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version: 1.21.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
# https://huggingface.co/docs/hub/spaces-config-reference
|
3 |
title: SVM
|
4 |
+
emoji: 🧬
|
5 |
+
colorFrom: green
|
6 |
+
colorTo: green
|
7 |
+
sdk: gradio
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
models:
|
11 |
+
- InstaDeepAI/nucleotide-transformer-500m-1000g
|
12 |
+
- facebook/esmfold_v1
|
13 |
+
- sentence-transformers/all-mpnet-base-v2
|
14 |
+
python_version: 3.10.4
|
15 |
+
license: mit
|
16 |
---
|
17 |
|
18 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,76 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
else:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from urllib import request
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import requests
|
9 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM, EsmModel, AutoModel
|
10 |
import torch
|
11 |
+
import progres as pg
|
12 |
+
|
13 |
+
|
14 |
+
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
15 |
+
model_nt = AutoModelForMaskedLM.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
16 |
+
model_nt.eval()
|
17 |
+
|
18 |
+
tokenizer_aa = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
|
19 |
+
model_aa = EsmModel.from_pretrained("facebook/esm2_t12_35M_UR50D")
|
20 |
+
model_aa.eval()
|
21 |
+
|
22 |
+
tokenizer_se = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
23 |
+
model_se = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
24 |
+
model_se.eval()
|
25 |
+
|
26 |
+
|
27 |
+
def nt_embed(sequence: str):
|
28 |
+
tokens_ids = tokenizer_nt.batch_encode_plus([sequence], return_tensors="pt")["input_ids"]
|
29 |
+
attention_mask = tokens_ids != tokenizer_nt.pad_token_id
|
30 |
+
with torch.no_grad():
|
31 |
+
torch_outs = model_nt(
|
32 |
+
tokens_ids,#.to('cuda'),
|
33 |
+
attention_mask=attention_mask,#.to('cuda'),
|
34 |
+
output_hidden_states=True
|
35 |
+
)
|
36 |
+
last_layer_CLS = torch_outs.hidden_states[-1].detach()[:, 0, :][0]
|
37 |
+
return last_layer_CLS
|
38 |
+
|
39 |
+
|
40 |
+
def aa_embed(sequence: str):
|
41 |
+
tokens = tokenizer_aa([sequence], return_tensors="pt")
|
42 |
+
with torch.no_grad():
|
43 |
+
torch_outs = model_aa(**tokens)
|
44 |
+
return torch_outs
|
45 |
+
|
46 |
+
|
47 |
+
def se_embed(sentence: str):
|
48 |
+
encoded_input = tokenizer_se([sentence], return_tensors='pt')
|
49 |
+
with torch.no_grad():
|
50 |
+
model_output = model_se(**encoded_input)
|
51 |
+
return model_output
|
52 |
+
|
53 |
+
|
54 |
+
def download_data_if_required():
|
55 |
+
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
|
56 |
+
fps = [pg.trained_model_fp]
|
57 |
+
urls = [f"{url_base}/trained_model.pt"]
|
58 |
+
#for targetdb in pre_embedded_dbs:
|
59 |
+
# fps.append(os.path.join(database_dir, targetdb + ".pt"))
|
60 |
+
# urls.append(f"{url_base}/{targetdb}.pt")
|
61 |
+
|
62 |
+
if not os.path.isdir(pg.trained_model_dir):
|
63 |
+
os.makedirs(pg.trained_model_dir)
|
64 |
+
#if not os.path.isdir(database_dir):
|
65 |
+
# os.makedirs(database_dir)
|
66 |
+
|
67 |
+
printed = False
|
68 |
+
for fp, url in zip(fps, urls):
|
69 |
+
if not os.path.isfile(fp):
|
70 |
+
if not printed:
|
71 |
+
print("Downloading data as first time setup (~340 MB) to ", pg.progres_dir,
|
72 |
+
", internet connection required, this can take a few minutes",
|
73 |
+
sep="", file=sys.stderr)
|
74 |
+
printed = True
|
75 |
+
try:
|
76 |
+
request.urlretrieve(url, fp)
|
77 |
+
d = torch.load(fp, map_location="cpu")
|
78 |
+
if fp == pg.trained_model_fp:
|
79 |
+
assert "model" in d
|
80 |
+
else:
|
81 |
+
assert "embeddings" in d
|
82 |
+
except:
|
83 |
+
if os.path.isfile(fp):
|
84 |
+
os.remove(fp)
|
85 |
+
print("Failed to download from", url, "and save to", fp, file=sys.stderr)
|
86 |
+
print("Exiting", file=sys.stderr)
|
87 |
+
sys.exit(1)
|
88 |
+
|
89 |
+
if printed:
|
90 |
+
print("Data downloaded successfully", file=sys.stderr)
|
91 |
+
|
92 |
+
|
93 |
+
def get_pdb(pdb_code="", filepath=""):
|
94 |
+
if pdb_code is None or pdb_code == "":
|
95 |
+
try:
|
96 |
+
with open(filepath.name) as f:
|
97 |
+
return f.read()
|
98 |
+
except AttributeError as e:
|
99 |
+
return None
|
100 |
else:
|
101 |
+
return requests.get(f"https://files.rcsb.org/view/{pdb_code}.pdb").content.decode()
|
102 |
+
|
103 |
+
|
104 |
+
def molecule(pdb):
|
105 |
+
|
106 |
+
x = (
|
107 |
+
"""<!DOCTYPE html>
|
108 |
+
<html>
|
109 |
+
<head>
|
110 |
+
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
|
111 |
+
<style>
|
112 |
+
body{
|
113 |
+
font-family:sans-serif
|
114 |
+
}
|
115 |
+
.mol-container {
|
116 |
+
width: 100%;
|
117 |
+
height: 600px;
|
118 |
+
position: relative;
|
119 |
+
}
|
120 |
+
.mol-container select{
|
121 |
+
background-image:None;
|
122 |
+
}
|
123 |
+
</style>
|
124 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
|
125 |
+
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
|
126 |
+
</head>
|
127 |
+
<body>
|
128 |
+
<div id="container" class="mol-container"></div>
|
129 |
+
|
130 |
+
<script>
|
131 |
+
let pdb = `"""
|
132 |
+
+ pdb
|
133 |
+
+ """`
|
134 |
+
|
135 |
+
$(document).ready(function () {
|
136 |
+
let element = $("#container");
|
137 |
+
let config = { backgroundColor: "black" };
|
138 |
+
let viewer = $3Dmol.createViewer(element, config);
|
139 |
+
viewer.addModel(pdb, "pdb");
|
140 |
+
viewer.getModel(0).setStyle({}, { cartoon: { color:"spectrum" } });
|
141 |
+
viewer.addSurface("MS", { opacity: .5, color: "white" });
|
142 |
+
viewer.zoomTo();
|
143 |
+
viewer.render();
|
144 |
+
viewer.zoom(0.8, 2000);
|
145 |
+
})
|
146 |
+
</script>
|
147 |
+
</body></html>"""
|
148 |
+
)
|
149 |
+
|
150 |
+
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
|
151 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
152 |
+
allow-scripts allow-same-origin allow-popups
|
153 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
154 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
155 |
+
|
156 |
+
|
157 |
+
def str2coords(s):
|
158 |
+
coords = []
|
159 |
+
for line in s.split('\n'):
|
160 |
+
if (line.startswith("ATOM ") or line.startswith("HETATM")) and line[12:16].strip() == "CA":
|
161 |
+
coords.append([float(line[30:38]), float(line[38:46]), float(line[46:54])])
|
162 |
+
elif line.startswith("ENDMDL"):
|
163 |
+
break
|
164 |
+
return coords
|
165 |
+
|
166 |
+
|
167 |
+
def update_st(inp, file):
|
168 |
+
pdb = get_pdb(inp, file)
|
169 |
+
return (molecule(pdb), pg.embed_coords(str2coords(pdb)))
|
170 |
+
|
171 |
+
|
172 |
+
def update_nt(inp):
|
173 |
+
return str(nt_embed(inp or ''))
|
174 |
+
|
175 |
+
|
176 |
+
def update_aa(inp):
|
177 |
+
return str(aa_embed(inp))
|
178 |
+
|
179 |
+
|
180 |
+
def update_se(inp):
|
181 |
+
return str(se_embed(inp))
|
182 |
+
|
183 |
+
|
184 |
+
demo = gr.Blocks()
|
185 |
+
|
186 |
+
with demo:
|
187 |
+
with gr.Tabs():
|
188 |
+
with gr.TabItem("PDB Structural Embeddings"):
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Box():
|
191 |
+
inp = gr.Textbox(
|
192 |
+
placeholder="PDB Code or upload file below", label="Input structure"
|
193 |
+
)
|
194 |
+
file = gr.File(file_count="single")
|
195 |
+
gr.Examples(["2CBA", "6VXX"], inp)
|
196 |
+
btn = gr.Button("View structure")
|
197 |
+
gr.Markdown("# PDB viewer using 3Dmol.js")
|
198 |
+
mol = gr.HTML()
|
199 |
+
emb = gr.Textbox(interactive=False)
|
200 |
+
btn.click(fn=update_st, inputs=[inp, file], outputs=[mol, emb])
|
201 |
+
with gr.TabItem("Nucleotide Sequence Embeddings"):
|
202 |
+
with gr.Box():
|
203 |
+
inp = gr.Textbox(
|
204 |
+
placeholder="ATCGCTGCCCGTAGATAATAAGAGACACTGAGGCC", label="Input Nucleotide Sequence"
|
205 |
+
)
|
206 |
+
btn = gr.Button("View embeddings")
|
207 |
+
emb = gr.Textbox(interactive=False)
|
208 |
+
btn.click(fn=update_nt, inputs=[inp], outputs=emb)
|
209 |
+
with gr.TabItem("Amino Acid Sequence Embeddings"):
|
210 |
+
with gr.Box():
|
211 |
+
inp = gr.Textbox(
|
212 |
+
placeholder="AAGQCYRGRCSGGLCCSKYGYCGSGPAYCG", label="Input Amino Acid Sequence"
|
213 |
)
|
214 |
+
btn = gr.Button("View embeddings")
|
215 |
+
emb = gr.Textbox(interactive=False)
|
216 |
+
btn.click(fn=update_aa, inputs=[inp], outputs=emb)
|
217 |
+
with gr.TabItem("Sentence Embeddings"):
|
218 |
+
with gr.Box():
|
219 |
+
inp = gr.Textbox(
|
220 |
+
placeholder="Your text here", label="Input Sentence"
|
221 |
+
)
|
222 |
+
btn = gr.Button("View embeddings")
|
223 |
+
emb = gr.Textbox(interactive=False)
|
224 |
+
btn.click(fn=update_se, inputs=[inp], outputs=emb)
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
download_data_if_required()
|
228 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
-
transformers
|
2 |
accelerate
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
accelerate
|
2 |
+
gradio==3.33.1
|
3 |
+
pyg-lib==0.2.0+pt20
|
4 |
+
requests==2.31.0
|
5 |
+
torch==2.0.1
|
6 |
+
torch-cluster==1.6.1
|
7 |
+
torch-geometric==2.3.1
|
8 |
+
torch-scatter==2.1.1
|
9 |
+
torch-sparse==0.6.17
|
10 |
+
torch-spline-conv==1.2.2
|
11 |
+
transformers==4.29.2
|