Spaces:
Runtime error
Runtime error
File size: 10,130 Bytes
237dc54 39b4836 237dc54 4d6f443 39b4836 378355d 39b4836 237dc54 39b4836 378355d 237dc54 4d6f443 39b4836 237dc54 1c6c14b 39b4836 237dc54 39b4836 237dc54 4d6f443 237dc54 1c6c14b 237dc54 4d6f443 237dc54 39b4836 237dc54 4d6f443 237dc54 39b4836 4d6f443 237dc54 4d6f443 237dc54 39b4836 237dc54 4d6f443 237dc54 4d6f443 237dc54 4d6f443 237dc54 4d6f443 237dc54 39b4836 237dc54 4d6f443 237dc54 1c6c14b 378355d 1c6c14b 4d6f443 378355d 661bc0f 378355d ccc4eeb 4d6f443 378355d 4d6f443 b27b04c 4d6f443 378355d b27b04c 4d6f443 237dc54 4d6f443 237dc54 4d6f443 39b4836 4d6f443 378355d 4d6f443 b27b04c 4d6f443 b27b04c 4d6f443 61c3cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import shutil
import tempfile
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, EulerDiscreteScheduler
from einops import rearrange
from huggingface_hub import hf_hub_download
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from torchvision.transforms import v2
from safetensors.torch import load_file
from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses,
get_zero123plus_input_cameras)
from src.utils.infer_util import (remove_background, resize_foreground)
from src.utils.mesh_util import save_glb, save_obj
from src.utils.train_util import instantiate_from_config
def find_cuda():
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
nvcc_path = shutil.which('nvcc')
if nvcc_path:
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(
0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected!")
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
z123_image = pipeline(
input_image, num_inference_steps=sample_steps).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image)
show_image = rearrange(
show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(
show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
@spaces.GPU
def make3d(images):
global model
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, use_renderer=False)
model = model.eval()
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
input_cameras = get_zero123plus_input_cameras(
batch_size=1, radius=4.0).to(device)
render_cameras = get_render_cameras(
batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(
images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
planes = model.forward_planes(images, input_cameras)
mesh_out = model.extract_mesh(
planes, use_texture_map=False, **infer_config)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
print(f"Mesh saved to {mesh_fpath}")
return mesh_fpath, mesh_glb_fpath
@spaces.GPU
def generate_image(prompt):
checkpoint = "sdxl_lightning_8step_unet.safetensors"
num_inference_steps = 8
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing")
pipe.unet.load_state_dict(
load_file(hf_hub_download(repo, checkpoint), device="cuda"))
results = pipe(
prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
return results.images[0]
# Configuration
cuda_path = find_cuda()
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = config_name.startswith('instant-mesh')
device = torch.device('cuda')
# Load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = hf_hub_download(
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# Load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith(
'lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
# Load StableDiffusionXL model
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
pipe = StableDiffusionXLPipeline.from_pretrained(
base, torch_dtype=torch.float16, variant="fp16").to("cuda")
print('Loading Finished!')
# Gradio UI
with gr.Blocks() as demo:
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
submit_prompt = gr.Button(
scale=1, variant='primary', label='Generate Image')
img = gr.Image(label='SDXL-Lightning Generated Image')
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Processed Image",
image_mode="RGBA",
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True)
sample_seed = gr.Number(
value=42, label="Seed Value", precision=0)
sample_steps = gr.Slider(
label="Sample Steps", minimum=30, maximum=75, value=75, step=5)
with gr.Row():
submit_mesh = gr.Button(
"Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[os.path.join("examples", img_name)
for img_name in sorted(os.listdir("examples"))],
inputs=[input_image],
label="Examples",
cache_examples=False,
examples_per_page=16
)
with gr.Column():
with gr.Row():
with gr.Column():
mv_show_images = gr.Image(
label="Generated Multi-views",
type="pil",
width=379,
interactive=False
)
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
interactive=False,
)
gr.Markdown(
"Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
interactive=False,
)
gr.Markdown(
"Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Row():
gr.Markdown(
'''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
mv_images = gr.State()
submit_prompt.click(fn=generate_image, inputs=[prompt], outputs=img)
submit_mesh.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=generate_mvs,
inputs=[processed_image, sample_steps, sample_seed],
outputs=[mv_images, mv_show_images]
).success(
fn=make3d,
inputs=[mv_images],
outputs=[output_model_obj, output_model_glb]
)
demo.launch()
|