Spaces:
Runtime error
Runtime error
File size: 12,798 Bytes
237dc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os, sys
import math
import json
import importlib
from pathlib import Path
import cv2
import random
import numpy as np
from PIL import Image
import webdataset as wds
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
center_looking_at_camera_pose,
get_surrounding_views,
)
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(
self,
batch_size=8,
num_workers=4,
train=None,
validation=None,
test=None,
**kwargs,
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.dataset_configs = dict()
if train is not None:
self.dataset_configs['train'] = train
if validation is not None:
self.dataset_configs['validation'] = validation
if test is not None:
self.dataset_configs['test'] = test
def setup(self, stage):
if stage in ['fit']:
self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
else:
raise NotImplementedError
def train_dataloader(self):
sampler = DistributedSampler(self.datasets['train'])
return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
def val_dataloader(self):
sampler = DistributedSampler(self.datasets['validation'])
return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler)
def test_dataloader(self):
return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
class ObjaverseData(Dataset):
def __init__(self,
root_dir='objaverse/',
meta_fname='valid_paths.json',
input_image_dir='rendering_random_32views',
target_image_dir='rendering_random_32views',
input_view_num=6,
target_view_num=2,
total_view_n=32,
fov=50,
camera_rotation=True,
validation=False,
):
self.root_dir = Path(root_dir)
self.input_image_dir = input_image_dir
self.target_image_dir = target_image_dir
self.input_view_num = input_view_num
self.target_view_num = target_view_num
self.total_view_n = total_view_n
self.fov = fov
self.camera_rotation = camera_rotation
with open(os.path.join(root_dir, meta_fname)) as f:
filtered_dict = json.load(f)
paths = filtered_dict['good_objs']
self.paths = paths
self.depth_scale = 4.0
total_objects = len(self.paths)
print('============= length of dataset %d =============' % len(self.paths))
def __len__(self):
return len(self.paths)
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
image = np.asarray(pil_img, dtype=np.float32) / 255.
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def __getitem__(self, index):
# load data
while True:
input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index])
target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index])
indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False)
input_indices = indices[:self.input_view_num]
target_indices = indices[self.input_view_num:]
'''background color, default: white'''
bg_white = [1., 1., 1.]
bg_black = [0., 0., 0.]
image_list = []
alpha_list = []
depth_list = []
normal_list = []
pose_list = []
try:
input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses']
for idx in input_indices:
image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white)
normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black)
depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
depth = torch.from_numpy(depth).unsqueeze(0)
pose = input_cameras[idx]
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
image_list.append(image)
alpha_list.append(alpha)
depth_list.append(depth)
normal_list.append(normal)
pose_list.append(pose)
target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses']
for idx in target_indices:
image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white)
normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black)
depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
depth = torch.from_numpy(depth).unsqueeze(0)
pose = target_cameras[idx]
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
image_list.append(image)
alpha_list.append(alpha)
depth_list.append(depth)
normal_list.append(normal)
pose_list.append(pose)
except Exception as e:
print(e)
index = np.random.randint(0, len(self.paths))
continue
break
images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W)
alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W)
depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W)
normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W)
w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4)
c2ws = torch.linalg.inv(w2cs).float()
normals = normals * 2.0 - 1.0
normals = F.normalize(normals, dim=1)
normals = (normals + 1.0) / 2.0
normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
# random rotation along z axis
if self.camera_rotation:
degree = np.random.uniform(0, math.pi * 2)
rot = torch.tensor([
[np.cos(degree), -np.sin(degree), 0, 0],
[np.sin(degree), np.cos(degree), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]).unsqueeze(0).float()
c2ws = torch.matmul(rot, c2ws)
# rotate normals
N, _, H, W = normals.shape
normals = normals * 2.0 - 1.0
normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W)
normals = F.normalize(normals, dim=1)
normals = (normals + 1.0) / 2.0
normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
# random scaling
if np.random.rand() < 0.5:
scale = np.random.uniform(0.8, 1.0)
c2ws[:, :3, 3] *= scale
depths *= scale
# instrinsics of perspective cameras
K = FOV_to_intrinsics(self.fov)
Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float()
data = {
'input_images': images[:self.input_view_num], # (6, 3, H, W)
'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W)
'input_depths': depths[:self.input_view_num], # (6, 1, H, W)
'input_normals': normals[:self.input_view_num], # (6, 3, H, W)
'input_c2ws': c2ws_input[:self.input_view_num], # (6, 4, 4)
'input_Ks': Ks[:self.input_view_num], # (6, 3, 3)
# lrm generator input and supervision
'target_images': images[self.input_view_num:], # (V, 3, H, W)
'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W)
'target_depths': depths[self.input_view_num:], # (V, 1, H, W)
'target_normals': normals[self.input_view_num:], # (V, 3, H, W)
'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4)
'target_Ks': Ks[self.input_view_num:], # (V, 3, 3)
'depth_available': 1,
}
return data
class ValidationData(Dataset):
def __init__(self,
root_dir='objaverse/',
input_view_num=6,
input_image_size=256,
fov=50,
):
self.root_dir = Path(root_dir)
self.input_view_num = input_view_num
self.input_image_size = input_image_size
self.fov = fov
self.paths = sorted(os.listdir(self.root_dir))
print('============= length of dataset %d =============' % len(self.paths))
cam_distance = 2.5
azimuths = np.array([30, 90, 150, 210, 270, 330])
elevations = np.array([30, -20, 30, -20, 30, -20])
azimuths = np.deg2rad(azimuths)
elevations = np.deg2rad(elevations)
x = cam_distance * np.cos(elevations) * np.cos(azimuths)
y = cam_distance * np.cos(elevations) * np.sin(azimuths)
z = cam_distance * np.sin(elevations)
cam_locations = np.stack([x, y, z], axis=-1)
cam_locations = torch.from_numpy(cam_locations).float()
c2ws = center_looking_at_camera_pose(cam_locations)
self.c2ws = c2ws.float()
self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float()
render_c2ws = get_surrounding_views(M=8, radius=cam_distance)
render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1)
self.render_c2ws = render_c2ws.float()
self.render_Ks = render_Ks.float()
def __len__(self):
return len(self.paths)
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)
image = np.asarray(pil_img, dtype=np.float32) / 255.
if image.shape[-1] == 4:
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
else:
alpha = np.ones_like(image[:, :, :1])
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def __getitem__(self, index):
# load data
input_image_path = os.path.join(self.root_dir, self.paths[index])
'''background color, default: white'''
# color = np.random.uniform(0.48, 0.52)
bkg_color = [1.0, 1.0, 1.0]
image_list = []
alpha_list = []
for idx in range(self.input_view_num):
image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color)
image_list.append(image)
alpha_list.append(alpha)
images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W)
alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W)
data = {
'input_images': images, # (6, 3, H, W)
'input_alphas': alphas, # (6, 1, H, W)
'input_c2ws': self.c2ws, # (6, 4, 4)
'input_Ks': self.Ks, # (6, 3, 3)
'render_c2ws': self.render_c2ws,
'render_Ks': self.render_Ks,
}
return data
|