File size: 6,137 Bytes
237dc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import torch
import xatlas
import trimesh
import cv2
import numpy as np
import nvdiffrast.torch as dr
from PIL import Image


def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath):

    pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]])
    facenp_fx3 = facenp_fx3[:, [2, 1, 0]]

    mesh = trimesh.Trimesh(
        vertices=pointnp_px3, 
        faces=facenp_fx3, 
        vertex_colors=colornp_px3,
    )
    mesh.export(fpath, 'obj')


def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath):

    pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]])

    mesh = trimesh.Trimesh(
        vertices=pointnp_px3, 
        faces=facenp_fx3, 
        vertex_colors=colornp_px3,
    )
    mesh.export(fpath, 'glb')


def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname):
    import os
    fol, na = os.path.split(fname)
    na, _ = os.path.splitext(na)

    matname = '%s/%s.mtl' % (fol, na)
    fid = open(matname, 'w')
    fid.write('newmtl material_0\n')
    fid.write('Kd 1 1 1\n')
    fid.write('Ka 0 0 0\n')
    fid.write('Ks 0.4 0.4 0.4\n')
    fid.write('Ns 10\n')
    fid.write('illum 2\n')
    fid.write('map_Kd %s.png\n' % na)
    fid.close()
    ####

    fid = open(fname, 'w')
    fid.write('mtllib %s.mtl\n' % na)

    for pidx, p in enumerate(pointnp_px3):
        pp = p
        fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2]))

    for pidx, p in enumerate(tcoords_px2):
        pp = p
        fid.write('vt %f %f\n' % (pp[0], pp[1]))

    fid.write('usemtl material_0\n')
    for i, f in enumerate(facenp_fx3):
        f1 = f + 1
        f2 = facetex_fx3[i] + 1
        fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
    fid.close()

    # save texture map
    lo, hi = 0, 1
    img = np.asarray(texmap_hxwx3, dtype=np.float32)
    img = (img - lo) * (255 / (hi - lo))
    img = img.clip(0, 255)
    mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True)
    mask = (mask <= 3.0).astype(np.float32)
    kernel = np.ones((3, 3), 'uint8')
    dilate_img = cv2.dilate(img, kernel, iterations=1)
    img = img * (1 - mask) + dilate_img * mask
    img = img.clip(0, 255).astype(np.uint8)
    Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png')


def loadobj(meshfile):
    v = []
    f = []
    meshfp = open(meshfile, 'r')
    for line in meshfp.readlines():
        data = line.strip().split(' ')
        data = [da for da in data if len(da) > 0]
        if len(data) != 4:
            continue
        if data[0] == 'v':
            v.append([float(d) for d in data[1:]])
        if data[0] == 'f':
            data = [da.split('/')[0] for da in data]
            f.append([int(d) for d in data[1:]])
    meshfp.close()

    # torch need int64
    facenp_fx3 = np.array(f, dtype=np.int64) - 1
    pointnp_px3 = np.array(v, dtype=np.float32)
    return pointnp_px3, facenp_fx3


def loadobjtex(meshfile):
    v = []
    vt = []
    f = []
    ft = []
    meshfp = open(meshfile, 'r')
    for line in meshfp.readlines():
        data = line.strip().split(' ')
        data = [da for da in data if len(da) > 0]
        if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)):
            continue
        if data[0] == 'v':
            assert len(data) == 4

            v.append([float(d) for d in data[1:]])
        if data[0] == 'vt':
            if len(data) == 3 or len(data) == 4:
                vt.append([float(d) for d in data[1:3]])
        if data[0] == 'f':
            data = [da.split('/') for da in data]
            if len(data) == 4:
                f.append([int(d[0]) for d in data[1:]])
                ft.append([int(d[1]) for d in data[1:]])
            elif len(data) == 5:
                idx1 = [1, 2, 3]
                data1 = [data[i] for i in idx1]
                f.append([int(d[0]) for d in data1])
                ft.append([int(d[1]) for d in data1])
                idx2 = [1, 3, 4]
                data2 = [data[i] for i in idx2]
                f.append([int(d[0]) for d in data2])
                ft.append([int(d[1]) for d in data2])
    meshfp.close()

    # torch need int64
    facenp_fx3 = np.array(f, dtype=np.int64) - 1
    ftnp_fx3 = np.array(ft, dtype=np.int64) - 1
    pointnp_px3 = np.array(v, dtype=np.float32)
    uvs = np.array(vt, dtype=np.float32)
    return pointnp_px3, facenp_fx3, uvs, ftnp_fx3


# ==============================================================================================
def interpolate(attr, rast, attr_idx, rast_db=None):
    return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all')


def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution):
    vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy())

    # Convert to tensors
    indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)

    uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
    mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
    # mesh_v_tex. ture
    uv_clip = uvs[None, ...] * 2.0 - 1.0

    # pad to four component coordinate
    uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)

    # rasterize
    rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution))

    # Interpolate world space position
    gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
    mask = rast[..., 3:4] > 0
    return uvs, mesh_tex_idx, gb_pos, mask