File size: 8,243 Bytes
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from omegaconf.dictconfig import DictConfig
from typing import List, Tuple

from ema_pytorch import EMA
import numpy as np
import torch
from torchtyping import TensorType
import torch.nn as nn
import lightning as L

from utils.random_utils import StackedRandomGenerator

# ------------------------------------------------------------------------------------- #

batch_size, num_samples = None, None
num_feats, num_rawfeats, num_cams = None, None, None
RawTrajectory = TensorType["num_samples", "num_rawfeats", "num_cams"]

# ------------------------------------------------------------------------------------- #


class Diffuser(L.LightningModule):
    def __init__(
        self,
        network: nn.Module,
        guidance_weight: float,
        ema_kwargs: DictConfig,
        sampling_kwargs: DictConfig,
        edm2_normalization: bool,
        **kwargs,
    ):
        super().__init__()

        # Network and EMA
        self.net = network
        self.ema = EMA(self.net, **ema_kwargs)
        self.guidance_weight = guidance_weight
        self.edm2_normalization = edm2_normalization
        self.sigma_data = network.sigma_data

        # Sampling
        self.num_steps = sampling_kwargs.num_steps
        self.sigma_min = sampling_kwargs.sigma_min
        self.sigma_max = sampling_kwargs.sigma_max
        self.rho = sampling_kwargs.rho
        self.S_churn = sampling_kwargs.S_churn
        self.S_noise = sampling_kwargs.S_noise
        self.S_min = sampling_kwargs.S_min
        self.S_max = (
            sampling_kwargs.S_max
            if isinstance(sampling_kwargs.S_max, float)
            else float("inf")
        )

    # ---------------------------------------------------------------------------------- #

    def on_predict_start(self):
        eval_dataset = self.trainer.datamodule.eval_dataset
        self.modalities = list(eval_dataset.modality_datasets.keys())

        self.get_matrix = self.trainer.datamodule.train_dataset.get_matrix
        self.v_get_matrix = self.trainer.datamodule.eval_dataset.get_matrix

    def predict_step(self, batch, batch_idx):
        ref_samples, mask = batch["traj_feat"], batch["padding_mask"]

        if len(self.modalities) > 0:
            cond_k = [x for x in batch.keys() if "traj" not in x and "feat" in x]
            cond_data = [batch[cond] for cond in cond_k]
            conds = {}
            for cond in cond_k:
                cond_name = cond.replace("_feat", "")
                if isinstance(batch[f"{cond_name}_raw"], dict):
                    for cond_name_, x in batch[f"{cond_name}_raw"].items():
                        conds[cond_name_] = x
                else:
                    conds[cond_name] = batch[f"{cond_name}_raw"]
            batch["conds"] = conds
        else:
            cond_data = None

        # cf edm2 sigma_data normalization / https://arxiv.org/pdf/2312.02696.pdf
        if self.edm2_normalization:
            ref_samples *= self.sigma_data
        _, gen_samples = self.sample(self.ema.ema_model, ref_samples, cond_data, mask)

        batch["ref_samples"] = torch.stack([self.v_get_matrix(x) for x in ref_samples])
        batch["gen_samples"] = torch.stack([self.get_matrix(x) for x in gen_samples])

        return batch

    # --------------------------------------------------------------------------------- #

    def sample(
        self,
        net: torch.nn.Module,
        traj_samples: RawTrajectory,
        cond_samples: TensorType["num_samples", "num_feats"],
        mask: TensorType["num_samples", "num_feats"],
        external_seeds: List[int] = None,
    ) -> Tuple[RawTrajectory, RawTrajectory]:
        # Pick latents
        num_samples = traj_samples.shape[0]
        seeds = self.gen_seeds if hasattr(self, "gen_seeds") else range(num_samples)
        rnd = StackedRandomGenerator(self.device, seeds)

        sz = [num_samples, self.net.num_feats, self.net.num_cams]
        latents = rnd.randn_rn(sz, device=self.device)
        # Generate trajectories.
        generations = self.edm_sampler(
            net,
            latents,
            class_labels=cond_samples,
            mask=mask,
            randn_like=rnd.randn_like,
            guidance_weight=self.guidance_weight,
            # ----------------------------------- #
            num_steps=self.num_steps,
            sigma_min=self.sigma_min,
            sigma_max=self.sigma_max,
            rho=self.rho,
            S_churn=self.S_churn,
            S_min=self.S_min,
            S_max=self.S_max,
            S_noise=self.S_noise,
        )

        return latents, generations

    @staticmethod
    def edm_sampler(
        net,
        latents,
        class_labels=None,
        mask=None,
        guidance_weight=2.0,
        randn_like=torch.randn_like,
        num_steps=18,
        sigma_min=0.002,
        sigma_max=80,
        rho=7,
        S_churn=0,
        S_min=0,
        S_max=float("inf"),
        S_noise=1,
    ):
        # Time step discretization.
        step_indices = torch.arange(num_steps, device=latents.device)
        t_steps = (
            sigma_max ** (1 / rho)
            + step_indices
            / (num_steps - 1)
            * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
        ) ** rho
        t_steps = torch.cat(
            [torch.as_tensor(t_steps), torch.zeros_like(t_steps[:1])]
        )  # t_N = 0

        # Main sampling loop.
        bool_mask = ~mask.to(bool)
        x_next = latents * t_steps[0]
        bs = latents.shape[0]
        for i, (t_cur, t_next) in enumerate(
            zip(t_steps[:-1], t_steps[1:])
        ):  # 0, ..., N-1
            x_cur = x_next

            # Increase noise temporarily.
            gamma = (
                min(S_churn / num_steps, np.sqrt(2) - 1)
                if S_min <= t_cur <= S_max
                else 0
            )
            t_hat = torch.as_tensor(t_cur + gamma * t_cur)
            x_hat = x_cur + (t_hat**2 - t_cur**2).sqrt() * S_noise * randn_like(x_cur)

            # Euler step.
            if class_labels is not None:
                class_label_knot = [torch.zeros_like(label) for label in class_labels]
                x_hat_both = torch.cat([x_hat, x_hat], dim=0)
                y_label_both = [
                    torch.cat([y, y_knot], dim=0)
                    for y, y_knot in zip(class_labels, class_label_knot)
                ]

                bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0)
                t_hat_both = torch.cat([t_hat.expand(bs), t_hat.expand(bs)], dim=0)
                cond_denoised, denoised = net(
                    x_hat_both, t_hat_both, y=y_label_both, mask=bool_mask_both
                ).chunk(2, dim=0)
                denoised = denoised + (cond_denoised - denoised) * guidance_weight
            else:
                denoised = net(x_hat, t_hat.expand(bs), mask=bool_mask)
            d_cur = (x_hat - denoised) / t_hat
            x_next = x_hat + (t_next - t_hat) * d_cur

            # Apply 2nd order correction.
            if i < num_steps - 1:
                if class_labels is not None:
                    class_label_knot = [
                        torch.zeros_like(label) for label in class_labels
                    ]
                    x_next_both = torch.cat([x_next, x_next], dim=0)
                    y_label_both = [
                        torch.cat([y, y_knot], dim=0)
                        for y, y_knot in zip(class_labels, class_label_knot)
                    ]
                    bool_mask_both = torch.cat([bool_mask, bool_mask], dim=0)
                    t_next_both = torch.cat(
                        [t_next.expand(bs), t_next.expand(bs)], dim=0
                    )
                    cond_denoised, denoised = net(
                        x_next_both, t_next_both, y=y_label_both, mask=bool_mask_both
                    ).chunk(2, dim=0)
                    denoised = denoised + (cond_denoised - denoised) * guidance_weight
                else:
                    denoised = net(x_next, t_next.expand(bs), mask=bool_mask)
                d_prime = (x_next - denoised) / t_next
                x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)

        return x_next