File size: 5,638 Bytes
f7a5cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
from scipy.spatial.transform import Rotation as R
import torch
from torchtyping import TensorType
from itertools import product

num_samples, num_cams = None, None


def rotvec_to_matrix(rotvec):
    return R.from_rotvec(rotvec).as_matrix()


def matrix_to_rotvec(mat):
    return R.from_matrix(mat).as_rotvec()


def compose_rotvec(r1, r2):
    """
    #TODO: adapt to torch
    Compose two rotation euler vectors.
    """
    r1 = r1.cpu().numpy() if isinstance(r1, torch.Tensor) else r1
    r2 = r2.cpu().numpy() if isinstance(r2, torch.Tensor) else r2

    R1 = rotvec_to_matrix(r1)
    R2 = rotvec_to_matrix(r2)
    cR = np.einsum("...ij,...jk->...ik", R1, R2)
    return torch.from_numpy(matrix_to_rotvec(cR))


def quat_to_rotvec(quat, eps=1e-6):
    # w > 0 to ensure 0 <= angle <= pi
    flip = (quat[..., :1] < 0).float()
    quat = (-1 * quat) * flip + (1 - flip) * quat

    angle = 2 * torch.atan2(torch.linalg.norm(quat[..., 1:], dim=-1), quat[..., 0])

    angle2 = angle * angle
    small_angle_scales = 2 + angle2 / 12 + 7 * angle2 * angle2 / 2880
    large_angle_scales = angle / torch.sin(angle / 2 + eps)

    small_angles = (angle <= 1e-3).float()
    rot_vec_scale = (
        small_angle_scales * small_angles + (1 - small_angles) * large_angle_scales
    )
    rot_vec = rot_vec_scale[..., None] * quat[..., 1:]
    return rot_vec


# batch*n
def normalize_vector(v, return_mag=False):
    batch = v.shape[0]
    v_mag = torch.sqrt(v.pow(2).sum(1))  # batch
    v_mag = torch.max(
        v_mag, torch.autograd.Variable(torch.FloatTensor([1e-8])).to(v.device)
    )
    v_mag = v_mag.view(batch, 1).expand(batch, v.shape[1])
    v = v / v_mag
    if return_mag is True:
        return v, v_mag[:, 0]
    else:
        return v


# u, v batch*n
def cross_product(u, v):
    batch = u.shape[0]
    i = u[:, 1] * v[:, 2] - u[:, 2] * v[:, 1]
    j = u[:, 2] * v[:, 0] - u[:, 0] * v[:, 2]
    k = u[:, 0] * v[:, 1] - u[:, 1] * v[:, 0]

    out = torch.cat(
        (i.view(batch, 1), j.view(batch, 1), k.view(batch, 1)), 1
    )  # [batch, 6]

    return out


def compute_rotation_matrix_from_ortho6d(ortho6d):
    x_raw = ortho6d[:, 0:3]  # [batch, 6]
    y_raw = ortho6d[:, 3:6]  # [batch, 6]

    x = normalize_vector(x_raw)  # [batch, 6]
    z = cross_product(x, y_raw)  # [batch, 6]
    z = normalize_vector(z)  # [batch, 6]
    y = cross_product(z, x)  # [batch, 6]

    x = x.view(-1, 3, 1)
    y = y.view(-1, 3, 1)
    z = z.view(-1, 3, 1)
    matrix = torch.cat((x, y, z), 2)  # [batch, 3, 3]
    return matrix


def invert_rotvec(rotvec: TensorType["num_samples", 3]):
    angle = torch.norm(rotvec, dim=-1)
    axis = rotvec / (angle.unsqueeze(-1) + 1e-6)
    inverted_rotvec = -angle.unsqueeze(-1) * axis
    return inverted_rotvec


def are_rotations(matrix: TensorType["num_samples", 3, 3]) -> TensorType["num_samples"]:
    """Check if a matrix is a rotation matrix."""
    # Check if the matrix is orthogonal
    identity = torch.eye(3, device=matrix.device)
    is_orthogonal = (
        torch.isclose(torch.bmm(matrix, matrix.transpose(1, 2)), identity, atol=1e-6)
        .all(dim=1)
        .all(dim=1)
    )

    # Check if the determinant is 1
    determinant = torch.det(matrix)
    is_determinant_one = torch.isclose(
        determinant, torch.tensor(1.0, device=matrix.device), atol=1e-6
    )

    return torch.logical_and(is_orthogonal, is_determinant_one)


def project_so3(
    matrix: TensorType["num_samples", 4, 4]
) -> TensorType["num_samples", 4, 4]:
    # Project rotation matrix to SO(3)
    # TODO: use torch
    rot = R.from_matrix(matrix[:, :3, :3].cpu().numpy()).as_matrix()

    projection = torch.eye(4).unsqueeze(0).repeat(matrix.shape[0], 1, 1).to(matrix)
    projection[:, :3, :3] = torch.from_numpy(rot).to(matrix)
    projection[:, :3, 3] = matrix[:, :3, 3]

    return projection


def pairwise_geodesic(
    R_x: TensorType["num_samples", "num_cams", 3, 3],
    R_y: TensorType["num_samples", "num_cams", 3, 3],
    reduction: str = "mean",
    block_size: int = 200,
):
    def arange(start, stop, step, endpoint=True):
        arr = torch.arange(start, stop, step)
        if endpoint and arr[-1] != stop - 1:
            arr = torch.cat((arr, torch.tensor([stop - 1], dtype=arr.dtype)))
        return arr

    # Geodesic distance
    # https://math.stackexchange.com/questions/2113634/comparing-two-rotation-matrices
    num_samples, num_cams, _, _ = R_x.shape

    C = torch.zeros(num_samples, num_samples, device=R_x.device)
    chunk_indices = arange(0, num_samples + 1, block_size, endpoint=True)
    for i, j in product(
        range(chunk_indices.shape[0] - 1), range(chunk_indices.shape[0] - 1)
    ):
        start_x, stop_x = chunk_indices[i], chunk_indices[i + 1]
        start_y, stop_y = chunk_indices[j], chunk_indices[j + 1]
        r_x, r_y = R_x[start_x:stop_x], R_y[start_y:stop_y]

        # Compute rotations between each pair of cameras of each sample
        r_xy = torch.einsum("anjk,bnlk->abnjl", r_x, r_y)  # b, b, N, 3, 3

        # Compute axis-angle representations: angle is the geodesic distance
        traces = r_xy.diagonal(dim1=-2, dim2=-1).sum(-1)
        c = torch.acos(torch.clamp((traces - 1) / 2, -1, 1)) / torch.pi

        # Average distance between cameras over samples
        if reduction == "mean":
            C[start_x:stop_x, start_y:stop_y] = c.mean(-1)
        elif reduction == "sum":
            C[start_x:stop_x, start_y:stop_y] = c.sum(-1)

        # Check for NaN values in traces
        if torch.isnan(c).any():
            raise ValueError("NaN values detected in traces")

    return C