File size: 7,870 Bytes
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# modified from https://github.com/Profactor/continuous-remeshing
import time
import torch
import torch_scatter
from typing import Tuple
from mesh_reconstruction.remesh import calc_edge_length, calc_edges, calc_face_collapses, calc_face_normals, calc_vertex_normals, collapse_edges, flip_edges, pack, prepend_dummies, remove_dummies, split_edges

@torch.no_grad()
def remesh(
        vertices_etc:torch.Tensor, #V,D
        faces:torch.Tensor, #F,3 long
        min_edgelen:torch.Tensor, #V
        max_edgelen:torch.Tensor, #V
        flip:bool,
        max_vertices=1e6
        ):

    # dummies
    vertices_etc,faces = prepend_dummies(vertices_etc,faces)
    vertices = vertices_etc[:,:3] #V,3
    nan_tensor = torch.tensor([torch.nan],device=min_edgelen.device)
    min_edgelen = torch.concat((nan_tensor,min_edgelen))
    max_edgelen = torch.concat((nan_tensor,max_edgelen))

    # collapse
    edges,face_to_edge = calc_edges(faces) #E,2 F,3
    edge_length = calc_edge_length(vertices,edges) #E
    face_normals = calc_face_normals(vertices,faces,normalize=False) #F,3
    vertex_normals = calc_vertex_normals(vertices,faces,face_normals) #V,3
    face_collapse = calc_face_collapses(vertices,faces,edges,face_to_edge,edge_length,face_normals,vertex_normals,min_edgelen,area_ratio=0.5)
    shortness = (1 - edge_length / min_edgelen[edges].mean(dim=-1)).clamp_min_(0) #e[0,1] 0...ok, 1...edgelen=0
    priority = face_collapse.float() + shortness
    vertices_etc,faces = collapse_edges(vertices_etc,faces,edges,priority)

    # split
    if vertices.shape[0]<max_vertices:
        edges,face_to_edge = calc_edges(faces) #E,2 F,3
        vertices = vertices_etc[:,:3] #V,3
        edge_length = calc_edge_length(vertices,edges) #E
        splits = edge_length > max_edgelen[edges].mean(dim=-1)
        vertices_etc,faces = split_edges(vertices_etc,faces,edges,face_to_edge,splits,pack_faces=False)

    vertices_etc,faces = pack(vertices_etc,faces)
    vertices = vertices_etc[:,:3]

    if flip:
        edges,_,edge_to_face = calc_edges(faces,with_edge_to_face=True) #E,2 F,3
        flip_edges(vertices,faces,edges,edge_to_face,with_border=False)

    return remove_dummies(vertices_etc,faces)
    
def lerp_unbiased(a:torch.Tensor,b:torch.Tensor,weight:float,step:int):
    """lerp with adam's bias correction"""
    c_prev = 1-weight**(step-1)
    c = 1-weight**step
    a_weight = weight*c_prev/c
    b_weight = (1-weight)/c
    a.mul_(a_weight).add_(b, alpha=b_weight)


class MeshOptimizer:
    """Use this like a pytorch Optimizer, but after calling opt.step(), do vertices,faces = opt.remesh()."""

    def __init__(self, 
            vertices:torch.Tensor, #V,3
            faces:torch.Tensor, #F,3
            lr=0.3, #learning rate
            betas=(0.8,0.8,0), #betas[0:2] are the same as in Adam, betas[2] may be used to time-smooth the relative velocity nu
            gammas=(0,0,0), #optional spatial smoothing for m1,m2,nu, values between 0 (no smoothing) and 1 (max. smoothing)
            nu_ref=0.3, #reference velocity for edge length controller
            edge_len_lims=(.01,.15), #smallest and largest allowed reference edge length
            edge_len_tol=.5, #edge length tolerance for split and collapse
            gain=.2,  #gain value for edge length controller
            laplacian_weight=.02, #for laplacian smoothing/regularization
            ramp=1, #learning rate ramp, actual ramp width is ramp/(1-betas[0])            
            grad_lim=10., #gradients are clipped to m1.abs()*grad_lim
            remesh_interval=1, #larger intervals are faster but with worse mesh quality
            local_edgelen=True, #set to False to use a global scalar reference edge length instead
            ):
        self._vertices = vertices
        self._faces = faces
        self._lr = lr
        self._betas = betas
        self._gammas = gammas
        self._nu_ref = nu_ref
        self._edge_len_lims = edge_len_lims
        self._edge_len_tol = edge_len_tol
        self._gain = gain
        self._laplacian_weight = laplacian_weight
        self._ramp = ramp
        self._grad_lim = grad_lim
        self._remesh_interval = remesh_interval
        self._local_edgelen = local_edgelen
        self._step = 0

        V = self._vertices.shape[0]
        # prepare continuous tensor for all vertex-based data 
        self._vertices_etc = torch.zeros([V,9],device=vertices.device)
        self._split_vertices_etc()
        self.vertices.copy_(vertices) #initialize vertices
        self._vertices.requires_grad_()
        self._ref_len.fill_(edge_len_lims[1])

    @property
    def vertices(self):
        return self._vertices

    @property
    def faces(self):
        return self._faces

    def _split_vertices_etc(self):
        self._vertices = self._vertices_etc[:,:3]
        self._m2 = self._vertices_etc[:,3]
        self._nu = self._vertices_etc[:,4]
        self._m1 = self._vertices_etc[:,5:8]
        self._ref_len = self._vertices_etc[:,8]
        
        with_gammas = any(g!=0 for g in self._gammas)
        self._smooth = self._vertices_etc[:,:8] if with_gammas else self._vertices_etc[:,:3]

    def zero_grad(self):
        self._vertices.grad = None

    @torch.no_grad()
    def step(self):
        
        eps = 1e-8

        self._step += 1

        # spatial smoothing
        edges,_ = calc_edges(self._faces) #E,2
        E = edges.shape[0]
        edge_smooth = self._smooth[edges] #E,2,S
        neighbor_smooth = torch.zeros_like(self._smooth) #V,S
        torch_scatter.scatter_mean(src=edge_smooth.flip(dims=[1]).reshape(E*2,-1),index=edges.reshape(E*2,1),dim=0,out=neighbor_smooth)
        
        #apply optional smoothing of m1,m2,nu
        if self._gammas[0]:
            self._m1.lerp_(neighbor_smooth[:,5:8],self._gammas[0])
        if self._gammas[1]:
            self._m2.lerp_(neighbor_smooth[:,3],self._gammas[1])
        if self._gammas[2]:
            self._nu.lerp_(neighbor_smooth[:,4],self._gammas[2])

        #add laplace smoothing to gradients
        laplace = self._vertices - neighbor_smooth[:,:3]
        grad = torch.addcmul(self._vertices.grad, laplace, self._nu[:,None], value=self._laplacian_weight)

        #gradient clipping
        if self._step>1:
            grad_lim = self._m1.abs().mul_(self._grad_lim)
            grad.clamp_(min=-grad_lim,max=grad_lim)

        # moment updates
        lerp_unbiased(self._m1, grad, self._betas[0], self._step)
        lerp_unbiased(self._m2, (grad**2).sum(dim=-1), self._betas[1], self._step)

        velocity = self._m1 / self._m2[:,None].sqrt().add_(eps) #V,3
        speed = velocity.norm(dim=-1) #V

        if self._betas[2]:
            lerp_unbiased(self._nu,speed,self._betas[2],self._step) #V
        else:
            self._nu.copy_(speed) #V

        # update vertices
        ramped_lr = self._lr * min(1,self._step * (1-self._betas[0]) / self._ramp)
        self._vertices.add_(velocity * self._ref_len[:,None], alpha=-ramped_lr)

        # update target edge length
        if self._step % self._remesh_interval == 0:
            if self._local_edgelen:
                len_change = (1 + (self._nu - self._nu_ref) * self._gain)
            else:
                len_change = (1 + (self._nu.mean() - self._nu_ref) * self._gain)
            self._ref_len *= len_change
            self._ref_len.clamp_(*self._edge_len_lims)

    def remesh(self, flip:bool=True, poisson=False)->Tuple[torch.Tensor,torch.Tensor]:
        min_edge_len = self._ref_len * (1 - self._edge_len_tol)
        max_edge_len = self._ref_len * (1 + self._edge_len_tol)
        
        self._vertices_etc,self._faces = remesh(self._vertices_etc,self._faces,min_edge_len,max_edge_len,flip, max_vertices=1e6)

        self._split_vertices_etc()
        self._vertices.requires_grad_()
        
        return self._vertices, self._faces