Unique3D / scripts /project_mesh.py
Wuvin's picture
x
7ad05d0
raw
history blame
19.1 kB
from typing import List
import torch
import numpy as np
from PIL import Image
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
RasterizationSettings,
TexturesVertex,
FoVPerspectiveCameras,
FoVOrthographicCameras,
)
from pytorch3d.renderer import MeshRasterizer
def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1):
"""
Renders pix2face of visible faces.
:param mesh: Pytorch3d.structures.Meshes
:param cameras: pytorch3d.renderer.Cameras
:param H: target image height
:param W: target image width
:param blur_radius: Float distance in the range [0, 2] used to expand the face
bounding boxes for rasterization. Setting blur radius
results in blurred edges around the shape instead of a
hard boundary. Set to 0 for no blur.
:param faces_per_pixel: (int) Number of faces to keep track of per pixel.
We return the nearest faces_per_pixel faces along the z-axis.
"""
# Define the settings for rasterization and shading
raster_settings = RasterizationSettings(
image_size=(H, W),
blur_radius=blur_radius,
faces_per_pixel=faces_per_pixel
)
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
)
fragments: Fragments = rasterizer(meshes, cameras=cameras)
return {
"pix_to_face": fragments.pix_to_face[..., 0],
}
import nvdiffrast.torch as dr
def _warmup(glctx, device=None):
device = 'cuda' if device is None else device
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
def tensor(*args, **kwargs):
return torch.tensor(*args, device=device, **kwargs)
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
tri = tensor([[0, 1, 2]], dtype=torch.int32)
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
class Pix2FacesRenderer:
def __init__(self, device="cuda"):
self._glctx = dr.RasterizeCudaContext(device=device)
self.device = device
_warmup(self._glctx, device)
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase):
vertices = cameras.transform_points_ndc(meshes.verts_padded())
perspective_correct = cameras.is_perspective()
znear = cameras.get_znear()
if isinstance(znear, torch.Tensor):
znear = znear.min().item()
z_clip = None if not perspective_correct or znear is None else znear / 2
if z_clip:
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] # clip
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices)
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32)
return vertices
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512):
meshes = meshes.to(self.device)
cameras = cameras.to(self.device)
vertices = self.transform_vertices(meshes, cameras)
faces = meshes.faces_packed().to(torch.int32)
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4
pix_to_face = rast_out[..., -1].to(torch.int32) - 1
return pix_to_face
pix2faces_renderer = None
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024):
# global pix2faces_renderer
# if pix2faces_renderer is None:
# pix2faces_renderer = Pix2FacesRenderer()
pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face']
# pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution)
unique_faces = torch.unique(pix_to_face.flatten())
unique_faces = unique_faces[unique_faces != -1]
return unique_faces
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object.
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object.
pil_image (PIL.Image.Image): The input image.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
debug (bool, optional): Whether to save debug images. Defaults to False.
Returns:
dict: A dictionary containing the following keys:
- "new_texture" (TexturesVertex): The updated texture with interpolated colors.
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected.
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices.
"""
meshes = meshes.to(device)
cameras = cameras.to(device)
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) # in CHW format of [0, 1.]
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution)
# visible faces
faces_normals = meshes.faces_normals_packed()[unique_faces]
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True)
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0]
view_direction = world_points[1] - world_points[0]
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True)
# find invalid faces
cos_angles = (faces_normals * view_direction).sum(dim=1)
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}"
selected_faces = unique_faces[cos_angles < -eps]
# find verts
faces = meshes.faces_packed()[selected_faces] # [N, 3]
verts = torch.unique(faces.flatten()) # [N, 1]
verts_coordinates = meshes.verts_packed()[verts] # [N, 3]
# compute color
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) # checked, correct
valid_pt = pt_tensor[valid, :]
valid_idx = verts[valid]
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) # [N, 4], note that bicubic may give invalid value
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3]
if not use_alpha:
alpha = torch.ones_like(alpha)
# modify color
old_colors = meshes.textures.verts_features_packed()
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha)
new_texture = TexturesVertex(verts_features=[old_colors])
valid_verts_normals = meshes.verts_normals_packed()[valid_idx]
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001)
cos_angles = (valid_verts_normals * view_direction).sum(dim=1)
return {
"new_texture": new_texture,
"valid_verts": valid_idx,
"valid_colors": valid_color,
"valid_alpha": alpha,
"cos_angles": cos_angles,
}
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict:
"""
meshes: the mesh with vertex color to be completed.
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1]
"""
valid_index = valid_index.to(meshes.device)
colors = meshes.textures.verts_features_packed() # [V, 3]
V = colors.shape[0]
invalid_index = torch.ones_like(colors[:, 0]).bool() # [V]
invalid_index[valid_index] = False
invalid_index = torch.arange(V).to(meshes.device)[invalid_index]
L = meshes.laplacian_packed()
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device)
L = L + E
# E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device)
# L = L + E
colored_count = torch.ones_like(colors[:, 0]) # [V]
colored_count[invalid_index] = 0
L_invalid = torch.index_select(L, 0, invalid_index) # sparse [IV, V]
total_colored = colored_count.sum()
coloring_round = 0
stage = "uncolored"
from tqdm import tqdm
pbar = tqdm(miniters=100)
while stage == "uncolored" or coloring_round > 0:
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) # [IV, 3]
new_count = torch.matmul(L_invalid, colored_count)[:, None] # [IV, 1]
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index])
colored_count[invalid_index] = (new_count[:, 0] > 0).float()
new_total_colored = colored_count.sum()
if new_total_colored > total_colored:
total_colored = new_total_colored
coloring_round += 1
else:
stage = "colored"
coloring_round -= 1
pbar.update(1)
if coloring_round > 10000:
print("coloring_round > 10000, break")
break
assert not torch.isnan(colors).any()
meshes.textures = TexturesVertex(verts_features=[colors])
return meshes
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh.
image_list (PIL.Image.Image): List of images.
cameras_list (list): List of cameras.
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35.
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1.
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False.
Returns:
Meshes: the colored mesh
"""
# 1. preprocess inputs
if image_list is None:
raise ValueError("image_list is None")
if cameras_list is None:
if len(image_list) == 8:
cameras_list = get_8view_cameras(device, focal=camera_focal)
elif len(image_list) == 6:
cameras_list = get_6view_cameras(device, focal=camera_focal)
elif len(image_list) == 4:
cameras_list = get_4view_cameras(device, focal=camera_focal)
elif len(image_list) == 2:
cameras_list = get_2view_cameras(device, focal=camera_focal)
else:
raise ValueError("cameras_list is None, and can not be guessed from image_list")
if weights is None:
if len(image_list) == 8:
weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05]
elif len(image_list) == 6:
weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05]
elif len(image_list) == 4:
weights = [2.0, 0.2, 1.0, 0.2]
elif len(image_list) == 2:
weights = [1.0, 1.0]
else:
raise ValueError("weights is None, and can not be guessed from image_list")
# 2. run projection
meshes = meshes.clone().to(device)
if weights is None:
weights = [1. for _ in range(len(cameras_list))]
assert len(cameras_list) == len(image_list) == len(weights)
original_color = meshes.textures.verts_features_packed()
assert not torch.isnan(original_color).any()
texture_counts = torch.zeros_like(original_color[..., :1])
texture_values = torch.zeros_like(original_color)
max_texture_counts = torch.zeros_like(original_color[..., :1])
max_texture_values = torch.zeros_like(original_color)
for camera, image, weight in zip(cameras_list, image_list, weights):
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
if reweight_with_cosangle == "linear":
weight = (ret['cos_angles'].abs() * weight)[:, None]
elif reweight_with_cosangle == "square":
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None]
if use_alpha:
weight = weight * ret['valid_alpha']
assert weight.min() > -0.0001
texture_counts[ret['valid_verts']] += weight
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']])
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight)
# Method2
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values)
if below_confidence_strategy == "smooth":
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values)
elif below_confidence_strategy == "original":
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values)
else:
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported")
assert not torch.isnan(texture_values).any()
meshes.textures = TexturesVertex(verts_features=[texture_values])
if complete_unseen:
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold])
ret_mesh = meshes.detach()
del meshes
return ret_mesh
def get_camera(R, T, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'):
if cam_type == 'fov':
camera = FoVPerspectiveCameras(device=R.device, R=R, T=T, fov=fov_in_degrees, degrees=True)
else:
focal_length = 1 / focal_length
camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length)
return camera
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1):
ret = []
for azim in azim_list:
R, T = look_at_view_transform(dist, 0, azim)
cameras: OrthographicCameras = get_camera(R, T, focal_length=focal, cam_type='orthogonal').to(device)
ret.append(cameras)
return ret
def get_8view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal)
def get_6view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal)
def get_4view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal)
def get_2view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 0], device=device, focal=focal)
def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1):
return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist)
def align_with_alpha_bbox(source_img, target_img, final_size=1024):
# align source_img with target_img using alpha channel
# source_img and target_img are PIL.Image.Image
source_img = source_img.convert("RGBA")
target_img = target_img.convert("RGBA").resize((final_size, final_size))
source_np = np.array(source_img)
target_np = np.array(target_img)
source_alpha = source_np[:, :, 3]
target_alpha = target_np[:, :, 3]
bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0)
bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0)
source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :]
# resize source_content to fit in the position of target_content
source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC)
target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content)
return Image.fromarray(target_np)
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None):
import os
image_list = []
for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']:
image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png")
pil = Image.open(image_path)
if dir == 'front':
if front_from_pil_or_path is not None:
if isinstance(front_from_pil_or_path, str):
replace_pil = Image.open(front_from_pil_or_path)
else:
replace_pil = front_from_pil_or_path
# align replace_pil with pil using bounding box in alpha channel
pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024)
image_list.append(pil)
return image_list
def load_image_list_from_img_grid(img_grid_path, resolution = 1024):
img_list = []
grid = Image.open(img_grid_path)
w, h = grid.size
for row in range(0, h, resolution):
for col in range(0, w, resolution):
img_list.append(grid.crop((col, row, col + resolution, row + resolution)))
return img_list