Unique3D / gradio_app /gradio_3dgen_steps.py
Wuvin's picture
rename files
5a3e910
raw
history blame
4.13 kB
import gradio as gr
from PIL import Image
from gradio_app.custom_models.mvimg_prediction import run_mvprediction
from gradio_app.utils import make_image_grid, split_image
from scripts.utils import save_glb_and_video
def concept_to_multiview(preview_img, input_processing, seed, guidance=1.):
seed = int(seed)
if preview_img is None:
raise gr.Error("preview_img is none.")
if isinstance(preview_img, str):
preview_img = Image.open(preview_img)
rgb_pils, front_pil = run_mvprediction(preview_img, remove_bg=input_processing, seed=seed, guidance_scale=guidance)
rgb_pil = make_image_grid(rgb_pils, rows=2)
return rgb_pil, front_pil
def concept_to_multiview_ui(concurrency_id="wkl"):
with gr.Row():
with gr.Column(scale=2):
preview_img = gr.Image(type='pil', image_mode='RGBA', label='Frontview')
input_processing = gr.Checkbox(
value=True,
label='Remove Background',
)
seed = gr.Slider(minimum=-1, maximum=1000000000, value=-1, step=1.0, label="seed")
guidance = gr.Slider(minimum=1.0, maximum=5.0, value=1.0, label="Guidance Scale", step=0.5)
run_btn = gr.Button('Generate Multiview', interactive=True)
with gr.Column(scale=3):
# export mesh display
output_rgb = gr.Image(type='pil', label="RGB", show_label=True)
output_front = gr.Image(type='pil', image_mode='RGBA', label="Frontview", show_label=True)
run_btn.click(
fn = concept_to_multiview,
inputs=[preview_img, input_processing, seed, guidance],
outputs=[output_rgb, output_front],
concurrency_id=concurrency_id,
api_name=False,
)
return output_rgb, output_front
from gradio_app.custom_models.normal_prediction import predict_normals
from scripts.multiview_inference import geo_reconstruct
def multiview_to_mesh_v2(rgb_pil, normal_pil, front_pil, do_refine=False, expansion_weight=0.1, init_type="std"):
rgb_pils = split_image(rgb_pil, rows=2)
if normal_pil is not None:
normal_pil = split_image(normal_pil, rows=2)
if front_pil is None:
front_pil = rgb_pils[0]
new_meshes = geo_reconstruct(rgb_pils, normal_pil, front_pil, do_refine=do_refine, predict_normal=normal_pil is None, expansion_weight=expansion_weight, init_type=init_type)
ret_mesh, video = save_glb_and_video("/tmp/gradio/generated", new_meshes, with_timestamp=True, dist=3.5, fov_in_degrees=2 / 1.35, cam_type="ortho", export_video=False)
return ret_mesh
def new_multiview_to_mesh_ui(concurrency_id="wkl"):
with gr.Row():
with gr.Column(scale=2):
rgb_pil = gr.Image(type='pil', image_mode='RGB', label='RGB')
front_pil = gr.Image(type='pil', image_mode='RGBA', label='Frontview(Optinal)')
normal_pil = gr.Image(type='pil', image_mode='RGBA', label='Normal(Optinal)')
do_refine = gr.Checkbox(
value=False,
label='Refine rgb',
visible=False,
)
expansion_weight = gr.Slider(minimum=-1.0, maximum=1.0, value=0.1, step=0.1, label="Expansion Weight", visible=False)
init_type = gr.Dropdown(choices=["std", "thin"], label="Mesh initialization", value="std", visible=False)
run_btn = gr.Button('Generate 3D', interactive=True)
with gr.Column(scale=3):
# export mesh display
output_mesh = gr.Model3D(value=None, label="mesh model", show_label=True)
run_btn.click(
fn = multiview_to_mesh_v2,
inputs=[rgb_pil, normal_pil, front_pil, do_refine, expansion_weight, init_type],
outputs=[output_mesh],
concurrency_id=concurrency_id,
api_name="multiview_to_mesh",
)
return rgb_pil, front_pil, output_mesh
#######################################
def create_step_ui(concurrency_id="wkl"):
with gr.Tab(label="3D:concept_to_multiview"):
concept_to_multiview_ui(concurrency_id)
with gr.Tab(label="3D:new_multiview_to_mesh"):
new_multiview_to_mesh_ui(concurrency_id)