Wuvin commited on
Commit
b31f4e6
1 Parent(s): ecc65f1
custum_3d_diffusion/custum_pipeline/unifield_pipeline_img2mvimg.py CHANGED
@@ -204,8 +204,7 @@ class StableDiffusionImage2MVCustomPipeline(
204
  # batch_size = len(image)
205
  # else:
206
  # batch_size = image.shape[0]
207
- # device = self._execution_device
208
- device = "cuda"
209
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
210
  # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
211
  # corresponds to doing no classifier free guidance.
@@ -214,9 +213,7 @@ class StableDiffusionImage2MVCustomPipeline(
214
  # 3. Encode input image
215
  emb_image = image
216
 
217
- image_embeddings = self._encode_image(emb_image, device, num_images_per_prompt, do_classifier_free_guidance).to(device=self.unet.device, dtype=self.unet.dtype)
218
- print("DEBUG: image_embeddings", image_embeddings.dtype, image_embeddings.device)
219
- print("DEBUG: version v111")
220
  cond_latents = self.encode_latents(image, image_embeddings.device, image_embeddings.dtype, height_cond, width_cond)
221
  cond_latents = torch.cat([torch.zeros_like(cond_latents), cond_latents]) if do_classifier_free_guidance else cond_latents
222
  image_pixels = self.feature_extractor(images=emb_image, return_tensors="pt").pixel_values
 
204
  # batch_size = len(image)
205
  # else:
206
  # batch_size = image.shape[0]
207
+ device = self._execution_device
 
208
  # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
209
  # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
210
  # corresponds to doing no classifier free guidance.
 
213
  # 3. Encode input image
214
  emb_image = image
215
 
216
+ image_embeddings = self._encode_image(emb_image, device, num_images_per_prompt, do_classifier_free_guidance)
 
 
217
  cond_latents = self.encode_latents(image, image_embeddings.device, image_embeddings.dtype, height_cond, width_cond)
218
  cond_latents = torch.cat([torch.zeros_like(cond_latents), cond_latents]) if do_classifier_free_guidance else cond_latents
219
  image_pixels = self.feature_extractor(images=emb_image, return_tensors="pt").pixel_values