Wuvin commited on
Commit
b869920
1 Parent(s): f38a22d
gradio_app/custom_models/{image2normal.yaml → image2image-objaverseF-rgb2normal.yaml} RENAMED
File without changes
gradio_app/custom_models/mvimg_prediction.py CHANGED
@@ -11,10 +11,11 @@ from scripts.utils import session, simple_preprocess
11
 
12
  training_config = "gradio_app/custom_models/image2mvimage.yaml"
13
  checkpoint_path = "ckpt/img2mvimg/unet_state_dict.pth"
14
- trainer, pipeline = load_pipeline(training_config, checkpoint_path)
15
- pipeline.enable_model_cpu_offload()
16
 
17
  def predict(img_list: List[Image.Image], guidance_scale=2., **kwargs):
 
 
 
18
  if isinstance(img_list, Image.Image):
19
  img_list = [img_list]
20
  img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
 
11
 
12
  training_config = "gradio_app/custom_models/image2mvimage.yaml"
13
  checkpoint_path = "ckpt/img2mvimg/unet_state_dict.pth"
 
 
14
 
15
  def predict(img_list: List[Image.Image], guidance_scale=2., **kwargs):
16
+ trainer, pipeline = load_pipeline(training_config, checkpoint_path)
17
+ # pipeline.enable_model_cpu_offload()
18
+
19
  if isinstance(img_list, Image.Image):
20
  img_list = [img_list]
21
  img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
gradio_app/custom_models/normal_prediction.py CHANGED
@@ -7,10 +7,11 @@ from scripts.all_typing import *
7
 
8
  training_config = "gradio_app/custom_models/image2normal.yaml"
9
  checkpoint_path = "ckpt/image2normal/unet_state_dict.pth"
10
- trainer, pipeline = load_pipeline(training_config, checkpoint_path)
11
- pipeline.enable_model_cpu_offload()
12
 
13
  def predict_normals(image: List[Image.Image], guidance_scale=2., do_rotate=True, num_inference_steps=30, **kwargs):
 
 
 
14
  img_list = image if isinstance(image, list) else [image]
15
  img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
16
  images = trainer.pipeline_forward(
 
7
 
8
  training_config = "gradio_app/custom_models/image2normal.yaml"
9
  checkpoint_path = "ckpt/image2normal/unet_state_dict.pth"
 
 
10
 
11
  def predict_normals(image: List[Image.Image], guidance_scale=2., do_rotate=True, num_inference_steps=30, **kwargs):
12
+ trainer, pipeline = load_pipeline(training_config, checkpoint_path)
13
+ # pipeline.enable_model_cpu_offload()
14
+
15
  img_list = image if isinstance(image, list) else [image]
16
  img_list = [rgba_to_rgb(i) if i.mode == 'RGBA' else i for i in img_list]
17
  images = trainer.pipeline_forward(