File size: 9,285 Bytes
68720c1
 
293829f
 
 
 
 
 
 
 
 
68720c1
 
 
 
 
 
 
 
 
 
 
293829f
 
 
 
 
 
 
 
 
 
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293829f
e7b6843
 
 
68720c1
 
 
29ce656
 
 
68720c1
 
 
 
 
293829f
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68720c1
 
 
 
 
f5aaf3c
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aaf3c
68720c1
 
bbcccf9
 
68720c1
 
 
 
 
 
 
1c8c09a
68720c1
 
 
 
 
 
 
 
 
 
293829f
68720c1
 
1c8c09a
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
293829f
68720c1
 
293829f
 
68720c1
 
 
 
 
 
f5aaf3c
 
 
 
 
293829f
 
68720c1
 
 
 
 
f5aaf3c
293829f
 
68720c1
 
 
 
293829f
 
 
 
 
 
 
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293829f
 
 
 
68720c1
f5aaf3c
293829f
68720c1
 
 
 
 
 
 
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68720c1
 
 
 
 
 
293829f
68720c1
 
 
 
 
 
293829f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import spaces

import sys
import os

current_dir = os.path.dirname(os.path.abspath(__file__))
et_dir = os.path.join(current_dir, 'ET')
ccd_dir = os.path.join(current_dir, 'CCD')
sys.path.append(et_dir)
sys.path.append(ccd_dir)

from functools import partial
from typing import Any, Callable, Dict

import clip
import gradio as gr
from gradio_rerun import Rerun
import numpy as np
import trimesh
import rerun as rr
import torch

from ET.utils.common_viz import init, get_batch
from ET.utils.random_utils import set_random_seed
from ET.utils.rerun import et_log_sample
from ET.src.diffuser import Diffuser
from ET.src.datasets.multimodal_dataset import MultimodalDataset

from CCD.utils.rerun import ccd_log_sample
from CCD.src.main import generate_CCD_sample



# ------------------------------------------------------------------------------------- #

batch_size, num_cams, num_verts = None, None, None

SAMPLE_IDS = [
    "2011_KAeAqaA0Llg_00005_00001",
    "2011_F_EuMeT2wBo_00014_00001",
    "2011_MCkKihQrNA4_00014_00000",
]
LABEL_TO_IDS = {
    "right": 0,
    "static": 1,
    "complex": 2,
}
EXAMPLES = [
    "While the character moves right, the camera trucks right.",
    "While the character moves right, the camera performs a push in.",
    "While the character moves right, the camera performs a pull out.",
    "The camera pans to the character. The camera switches from right front view to right back view. The character is at the middle center of the screen. The camera shoots at close shot.",
    "Movement: fullZoomIn Easing: easeInOutSine Frames: 30 Camera Angle: highAngle Shot Type: closeUp",
    "Movement: pedestalDown Easing: easeOutExpo Frames: 30 Camera Angle: mediumAngle Shot Type: longShot",  # noqa
    "Movement: dollyIn Easing: easeOutBounce Frames: 30 Camera Angle: mediumAngle Shot Type: longShot",  # noqa
]
DEFAULT_TEXT = [
    "While the character moves right, the camera [...].",
    "Movement: dollyIn Easing: easeOutBounce Frames: 30 [...].",
    "Movement: shortArcShotRight Easing: easeInOutQuad  [...]. "
    "Movement: fullZoomIn Easing: easeInOutSine  [...].",
]

HEADER = """

<div align="center">
<h1 style='text-align: center'>Camera Trajectory Generation</h2>
<a href="https://robincourant.github.io/info/"><strong>Robin Courant</strong></a>

<a href="https://nicolas-dufour.github.io/"><strong>Nicolas Dufour</strong></a>

<a href="https://triocrossing.github.io/"><strong>Xi Wang</strong></a>

<a href="http://people.irisa.fr/Marc.Christie/"><strong>Marc Christie</strong></a>

<a href="https://vicky.kalogeiton.info/"><strong>Vicky Kalogeiton</strong></a>
</div>


<div align="center">
    <a href="https://www.lix.polytechnique.fr/vista/projects/2024_et_courant/" class="button"><b>[Webpage]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/DIRECTOR" class="button"><b>[DIRECTOR]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/CLaTr" class="button"><b>[CLaTr]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/the-exceptional-trajectories" class="button"><b>[Data]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
</div>

<br/>
"""

# ------------------------------------------------------------------------------------- #


def get_normals(vertices: torch.Tensor, faces: torch.Tensor) -> torch.Tensor:
    num_frames, num_faces = vertices.shape[0], faces.shape[-2]
    faces = faces.expand(num_frames, num_faces, 3)

    normals = [
        trimesh.Trimesh(vertices=v, faces=f, process=False).vertex_normals
        for v, f in zip(vertices, faces)
    ]
    normals = torch.from_numpy(np.stack(normals))

    return normals


@spaces.GPU
def generate_ccd(
    prompt: str,
    seed: int,
    guidance_weight: float,
    character_position: list,
) -> Dict[str, Any]:
    
    results = generate_CCD_sample(prompt)

    rr.init(f"{3}")
    rr.save(".tmp_gr.rrd")
    ccd_log_sample(
        root_name="world",
        traj=np.array(results)
    )
    return "./.tmp_gr.rrd"

@spaces.GPU
def generate(
    prompt: str,
    seed: int,
    guidance_weight: float,
    character_position: list,
    # ----------------------- #
    dataset: MultimodalDataset,
    device: torch.device,
    diffuser: Diffuser,
    clip_model: clip.model.CLIP,
) -> Dict[str, Any]:
    diffuser.to(device)
    clip_model.to(device)

    # Set arguments
    set_random_seed(seed)
    diffuser.gen_seeds = np.array([seed])
    diffuser.guidance_weight = guidance_weight

    # Inference
    sample_id = SAMPLE_IDS[0]  # Default to the first sample ID
    seq_feat = diffuser.net.model.clip_sequential

    batch = get_batch(prompt, sample_id, character_position, clip_model, dataset, seq_feat, device)

    with torch.no_grad():
        out = diffuser.predict_step(batch, 0)

    # Run visualization
    padding_mask = out["padding_mask"][0].to(bool).cpu()
    padded_traj = out["gen_samples"][0].cpu()
    traj = padded_traj[padding_mask]
    char_traj = out["char_feat"][0].cpu()
    padded_vertices = out["char_raw"]["char_vertices"][0]
    vertices = padded_vertices[padding_mask]
    faces = out["char_raw"]["char_faces"][0]
    normals = get_normals(vertices, faces)
    fx, fy, cx, cy = out["intrinsics"][0].cpu().numpy()
    K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    caption = out["caption_raw"][0]

    rr.init(f"{sample_id}")
    rr.save(".tmp_gr.rrd")
    et_log_sample(
        root_name="world",
        traj=traj.numpy(),
        char_traj=char_traj.numpy(),
        K=K,
        vertices=vertices.numpy(),
        faces=faces.numpy(),
        normals=normals.numpy(),
        caption=caption,
        mesh_masks=None,
    )
    return "./.tmp_gr.rrd"


# ------------------------------------------------------------------------------------- #


def launch_app(gen_fn_et: Callable, gen_fn_ccd: Callable):
    theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")

    model_options = {"ET":gen_fn_et, "CCD":gen_fn_ccd, "LensCraft":gen_fn_et}

    with gr.Blocks(theme=theme) as demo:
        gr.Markdown(HEADER)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Column(scale=2):
                    char_position = gr.Textbox(
                        placeholder="Enter character position as [x, y, z]",
                        show_label=True,
                        label="Character Position (3D vector)",
                        value="[0.0, 0.0, 0.0]",
                        interactive=True,  # Ensure this is set to True
                        
                    )
                    text = gr.Textbox(
                        placeholder="Type the camera motion you want to generate",
                        show_label=True,
                        label="Text prompt",
                        value=DEFAULT_TEXT[0],
                        interactive=True,  # Ensure this is set to True

                    )
                    seed = gr.Number(value=33, label="Seed")
                    guidance = gr.Slider(0, 10, value=1.4, label="Guidance", step=0.1)

                    # Add a dropdown menu for selecting the generation model
                    model_selector = gr.Dropdown(
                        choices=list(model_options.keys()),
                        value=list(model_options.keys())[0],
                        label="Generation Model",
                    )

                with gr.Column(scale=1):
                    btn = gr.Button("Generate", variant="primary")

            with gr.Column(scale=2):
                examples = gr.Examples(
                    examples=[[x, None, None] for x in EXAMPLES],
                    inputs=[text],
                )

        with gr.Row():
            output = Rerun()

        def load_example(example_id):
            processed_example = examples.non_none_processed_examples[example_id]
            return gr.utils.resolve_singleton(processed_example)
        
        def dynamic_generate(selected_model, *args):
            gen_fn = model_options[selected_model]
            return gen_fn(*args)        

        inputs = [text, seed, guidance, char_position]
        
        examples.dataset.click(
            load_example,
            inputs=[examples.dataset],
            outputs=examples.inputs_with_examples,
            show_progress=False,
            postprocess=False,
            queue=False,
        ).then(fn=dynamic_generate,
         inputs=[model_selector, text, seed, guidance, char_position],
         outputs=[output])


        btn.click(
            fn=dynamic_generate,
            inputs=[model_selector, text, seed, guidance, char_position],
            outputs=[output],
        )
        text.submit(
            fn=dynamic_generate,
            inputs=[model_selector, text, seed, guidance, char_position],
            outputs=[output],
        )        

    demo.queue().launch(share=False)


# ------------------------------------------------------------------------------------- #

diffuser, clip_model, dataset, device = init("config")
generate_sample_et = partial(
    generate,
    dataset=dataset,
    device=device,
    diffuser=diffuser,
    clip_model=clip_model,
)

generate_sample_ccd = partial(
    generate_ccd
)

launch_app(generate_sample_et, generate_sample_ccd)